A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Prediction of Freezing of Gait in Parkinson's From Physiological Wearables: An Exploratory Study. | LitMetric

Freezing of gait (FoG) is a common gait impairment among patients with advanced Parkinson's disease. FoG is associated with falls and negatively impacts the patient's quality of life. Wearable systems that detect FoG in real time have been developed to help patients resume walking by means of rhythmic cueing. Current methods focus on detection, which require FoG events to happen first, while their prediction opens the road to preemptive cueing, which might help subjects to avoid freeze altogether. We analyzed electrocardiography (ECG) and skin-conductance (SC) data from 11 subjects who experience FoG in daily life, and found statistically significant changes in ECG and SC data just before the FoG episodes, compared to normal walking. Based on these findings, we developed an anomaly-based algorithm for predicting gait freeze from relevant SC features. We were able to predict 71.3% from 184 FoG with an average of 4.2 s before a freeze episode happened. Our findings enable the possibility of wearable systems, which predict with few seconds before an upcoming FoG from SC, and start external cues to help the user avoid the gait freeze.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2015.2465134DOI Listing

Publication Analysis

Top Keywords

freezing gait
8
fog
8
wearable systems
8
gait freeze
8
gait
5
prediction freezing
4
gait parkinson's
4
parkinson's physiological
4
physiological wearables
4
wearables exploratory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!