Out-of-focus blur occurs frequently in multispectral imaging systems when the camera is well focused at a specific (reference) imaging channel. As the effective focal lengths of the lens are wavelength dependent, the blurriness levels of the images at individual channels are different. This paper proposes a multispectral image deblurring framework to restore out-of-focus spectral images based on the characteristic of interchannel correlation (ICC). The ICC is investigated based on the fact that a high-dimensional color spectrum can be linearly approximated using rather a few number of intrinsic spectra. In the method, the spectral images are classified into an out-of-focus set and a well-focused set via blurriness computation. For each out-of-focus image, a guiding image is derived from the well-focused spectral images and is used as the image prior in the deblurring framework. The out-of-focus blur is modeled as a Gaussian point spread function, which is further employed as the blur kernel prior. The regularization parameters in the image deblurring framework are determined using generalized cross validation, and thus the proposed method does not need any parameter tuning. The experimental results validate that the method performs well on multispectral image deblurring and outperforms the state of the arts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2465162DOI Listing

Publication Analysis

Top Keywords

multispectral image
12
image deblurring
12
deblurring framework
12
spectral images
12
interchannel correlation
8
out-of-focus blur
8
out-of-focus
6
image
6
deblurring
5
multispectral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!