A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Signature Channels of Excitability no More: L-Type Channels in Immune Cells. | LitMetric

Signature Channels of Excitability no More: L-Type Channels in Immune Cells.

Front Immunol

Department of Biomedical Research, National Jewish Health , Denver, CO , USA ; Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO , USA.

Published: August 2015

Although the concept of Ca(2+) as a universal messenger is well established, it was assumed that the regulatory mechanisms of Ca(2+)-signaling were divided along the line of electric excitability. Recent advances in molecular biology and genomics have, however, provided evidence that non-excitable cells such as immunocytes also express a wide and diverse pool of ion channels that does not differ as significantly from that of excitable cells as originally assumed. Ion channels and transporters are involved in virtually all aspects of immune response regulation, from cell differentiation and development to activation, and effector functions such as migration, antibody-secretion, phagosomal maturation, or vesicular delivery of bactericidal agents. This comprises TRP channel family members, voltage- and Ca(2+)-gated K(+)- and Na(+)-channels, as well as unexpectedly, components of the CaV1-subfamily of voltage-gated L-type Ca(2+)-channels, originally thought to be signature molecules of excitability. This article provides an overview of recent observations made in the field of CaV1 L-type channel function in the immune context, as well as presents results we obtained studying these channels in B-lymphocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4512153PMC
http://dx.doi.org/10.3389/fimmu.2015.00375DOI Listing

Publication Analysis

Top Keywords

ion channels
8
signature channels
4
channels excitability
4
excitability l-type
4
channels
4
l-type channels
4
channels immune
4
immune cells
4
cells concept
4
concept ca2+
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!