Improved mechanical stability of HKUST-1 in confined nanospace.

Chem Commun (Camb)

Laboratorio de Materiales Avanzados, Departamento de Química Inorgánica-Instituto Universitario de Materiales, Universidad de Alicante, Ctra. San Vicente-Alicante s/n, E-03690 San Vicente del Raspeig, Spain.

Published: September 2015

One of the main concerns in the technological application of several metal-organic frameworks (MOFs) relates to their structural instability under pressure (after a conforming step). Here we report for the first time that mechanical instability can be highly improved via nucleation and growth of MOF nanocrystals in the confined nanospace of activated carbons.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cc05107jDOI Listing

Publication Analysis

Top Keywords

confined nanospace
8
improved mechanical
4
mechanical stability
4
stability hkust-1
4
hkust-1 confined
4
nanospace main
4
main concerns
4
concerns technological
4
technological application
4
application metal-organic
4

Similar Publications

Block Architectures in 2D Polymer Networks Fabricated via Sequential Copolymerization in a Metal-Organic Framework.

Chemistry

December 2024

Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Two-dimensional (2D) polymer network monolayers with novel block architectures were fabricated via sequential copolymerization within a pillared-layer metal-organic framework (MOF) that served as the reaction template. The MOF provides a confined 2D nanospace, restricting the crosslinking copolymerization of vinyl monomers to two dimensions. Sequential crosslinking copolymerization of methyl methacrylate and styrene, regulated by the reversible addition-fragmentation chain transfer (RAFT) process, resulted in the formation of 2D block architectures with 'patchy' domains consisting of crosslinked poly(methyl methacrylate) and polystyrene segments.

View Article and Find Full Text PDF

Silica-based nanostructures are among the most utilized materials. However, a persistent challenge is their irreversible agglomeration upon drying and heat treatments, restricting their homogeneous colloidal re-dispersion - a mandatory requirement for diverse bio-applications. We address this bottleneck by developing a self carbo-passivation (SCP) strategy: silica nanoparticles (NPs), pre-included with the catalytic metal precursors and organosilanes undergo thermochemical conversion with highly controlled interior-to-surface segregation of nanometer-scale "carbonaceous skin patches".

View Article and Find Full Text PDF

Vertically Expanded Crystalline Porous Covalent Organic Frameworks.

J Am Chem Soc

November 2024

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City 350207, China.

Covalent organic frameworks (COFs) can be developed for molecular confinement and separation. However, their proximate π stacks limit the interlayer distance to be only 3-6 Å, which is too small for guests to enter. As a result, COFs block access to the - space and limit guest entry/exit strictly to only the pores along the direction.

View Article and Find Full Text PDF

Activating Metal-Organic Cages by Incorporating Functional M(ImPhen) Metalloligands: From Structural Design to Applications.

Acc Chem Res

November 2024

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

Article Synopsis
  • Researchers have focused on mimicking natural biofunctions through the development of metal-organic cages (MOCs), which are structured assemblies designed to replicate properties of enzymes and protein cages.* -
  • The key to achieving specific functionalities in these cages involves designing their structures to create confined environments that support specialized reactivities and selectivities, making them useful in areas like molecular transport and catalysis.* -
  • This work emphasizes the use of M(ImPhen) metalloligands to build multifunctional MOCs, allowing for the customization of properties by pairing various metal ions with their unique characteristics for enhanced stability and performance in biological applications.*
View Article and Find Full Text PDF
Article Synopsis
  • Ongoing research is focused on safely storing and utilizing hydrogen as a fuel alternative to carbon-based sources, but challenges like high energy costs due to its low density complicate this goal.
  • Clathrates, or gas hydrates, form when hydrogen is trapped in water molecules, providing a potential solution for safely storing hydrogen as they only require water to create these structures.
  • A proposed solution involves using hydrophobic mesoporous silica as a host material, which allows for hydrogen storage at lower pressures and temperatures, showing about a 20% reduction in required pressure for formation compared to traditional methods, with further insights gained from neutron scattering techniques.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!