The chemical reaction between hydrogen and purely sp(2)-bonded graphene to form graphene's purely sp(3)-bonded analogue, graphane, potentially allows the synthesis of a much wider variety of novel two-dimensional materials by opening a pathway to the application of conventional chemistry methods in graphene. Graphene is currently hydrogenated by exposure to atomic hydrogen in a vacuum, but these methods have not yielded a complete conversion of graphene to graphane, even with graphene exposed to hydrogen on both sides of the lattice. By heating graphene in molecular hydrogen under compression to modest high pressure in a diamond anvil cell (2.6-5.0 GPa), we are able to react graphene with hydrogen and propose a method whereby fully hydrogenated graphane may be synthesized for the first time.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b02712DOI Listing

Publication Analysis

Top Keywords

high pressure
8
graphene
7
hydrogen
5
hydrogenation graphene
4
graphene reaction
4
reaction high
4
pressure high
4
high temperature
4
temperature chemical
4
chemical reaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!