Phosphorene, a two-dimensional (2D) monolayer of black phosphorus, has attracted considerable theoretical interest, although the experimental realization of monolayer, bilayer, and few-layer flakes has been a significant challenge. Here, we systematically survey conditions for liquid exfoliation to achieve the first large-scale production of monolayer, bilayer, and few-layer phosphorus, with exfoliation demonstrated at the 10 g scale. We describe a rapid approach for quantifying the thickness of 2D phosphorus and show that monolayer and few-layer flakes produced by our approach are crystalline and unoxidized, while air exposure leads to rapid oxidation and the production of acid. With large quantities of 2D phosphorus now available, we perform the first quantitative measurements of the material's absorption edge-which is nearly identical to the material's band gap under our experimental conditions-as a function of flake thickness. Our interpretation of the absorbance spectrum relies on an analytical method introduced in this work, allowing the accurate determination of the absorption edge in polydisperse samples of quantum-confined semiconductors. Using this method, we found that the band gap of black phosphorus increased from 0.33 ± 0.02 eV in bulk to 1.88 ± 0.24 eV in bilayers, a range that is larger than that of any other 2D material. In addition, we quantified a higher-energy optical transition (VB-1 to CB), which changes from 2.0 eV in bulk to 3.23 eV in bilayers. This work describes several methods for producing and analyzing 2D phosphorus while also yielding a class of 2D materials with unprecedented optoelectronic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b02599 | DOI Listing |
Environ Sci Technol
January 2025
School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States.
Phosphorus recovery through enhanced biological phosphorus removal (EBPR) processes from agricultural wastes holds promise in mitigating the impending global P shortage. However, the complex nutrient forms and the microbial augments, expected to exert a profound impact on crop rhizomicrobiome and thus crop health, remained unexplored. In this study, we investigated the impacts of EBPR biosolids on crops growth and rhizomicrobiome in comparison to chemical fertilizer and Vermont manure compost.
View Article and Find Full Text PDFChem Biodivers
January 2025
Sari Agricultural Sciences and Natural Resources University, Rangeland Sciences, sari, IRAN, ISLAMIC REPUBLIC OF.
This study investigates the influence of environmental factors on the secondary metabolites of Stachyslavandulifolia Vahl., focusing on how soil properties, temperature, and precipitation affect the yield and chemical composition of its essential oils. The research was conducted in two domains within three rangelands in Mazandaran province, Iran.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto Institute of Technology: Kyoto Kogei Sen'i Daigaku, Faculty of Molecular Chemistry and Engineering, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-0962, Kyoto, JAPAN.
Heteroarene-fused heteroles have attracted considerable attention owing to their unique electronic and photophysical properties. The bridging element plays a crucial role in determining the electronic characteristics of the resulting π-conjugated molecules. In this study, we synthesized a series of heteroarene-fused benzo[b]arsoles and investigated their structures and photophysical properties.
View Article and Find Full Text PDFKidney360
January 2025
Unicycive Therapeutics, Los Altos, CA, United States.
Background: This study evaluated the combined effects of oxylanthanum carbonate (OLC), an investigational phosphate binder, and tenapanor, an approved sodium/hydrogen exchanger 3 (NHE3) inhibitor that reduces paracellular phosphate absorption, on urinary phosphate excretion in rats on a high phosphorus diet.
Methods: Sixty-four male Sprague Dawley rats were randomized into eight groups: vehicle; tenapanor (0.15 mg/kg) only; OLC (0.
Int Microbiol
January 2025
State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!