Synergistic amylomaltase and branching enzyme catalysis to suppress cassava starch digestibility.

Carbohydr Polym

Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Published: November 2015

Starch provides our main dietary caloric intake and over-consumption of starch-containing foods results in escalating life-style disease including diabetes. By increasing the content of α-1,6 branch points in starch, digestibility by human amylolytic enzymes is expected to be retarded. Aiming at generating a soluble and slowly digestible starch by increasing the content and changing the relative positioning of the branch points in the starch molecules, we treated cassava starch with amylomaltase (AM) and branching enzyme (BE). We performed a detailed molecular analysis of the products including amylopectin chain length distribution, content of α-1,6 glucosidic linkages, absolute molecular weight distribution and digestibility. Step-by-step enzyme catalysis was the most efficient treatment, and it generated branch structures even more extreme than those of glycogen. All AM- and BE-treated samples showed increased resistance to degradation by porcine pancreatic α-amylase and glucoamylase as compared to cassava starch. The amylolytic products showed chain lengths and branching patterns similar to the products obtained from glycogen. Our data demonstrate that combinatorial enzyme catalysis provides a strategy to generate potential novel soluble α-glucan ingredients with low dietary digestibility assets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.05.084DOI Listing

Publication Analysis

Top Keywords

enzyme catalysis
12
cassava starch
12
amylomaltase branching
8
branching enzyme
8
starch digestibility
8
increasing content
8
content α-16
8
branch points
8
points starch
8
starch
7

Similar Publications

Kdm2a inhibition in skeletal muscle improves metabolic flexibility in obesity.

Nat Metab

January 2025

Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.

Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.

View Article and Find Full Text PDF

A terpene synthase gene (mtas) from Menisporopsis theobromae BCC 4162 was heterologously expressed in Aspergillus oryzae NSAR1, resulting in the production of (+)-aristolochene. Mutations were introduced in MtAS at aromatic residues (Y83, F103, F169, and W323) surrounding the active site, which are critical for precursor cyclisation and intermediate stabilisation during aristolochene biosynthesis. Transformants harbouring mutated mtas, specifically F103W, F169A and F169W, produced (2R,4S,5R,7S)-2-hydroxyaristolochene as the major product, along with aristolochene and other tentative metabolites, including germacrene A and sesquiterpenoids.

View Article and Find Full Text PDF

[FeFe] hydrogenases make up a structurally diverse family of metalloenzymes that catalyze proton/dihydrogen interconversion. They can be classified into phylogenetically distinct groups denoted A-G, which differ in structure and reactivity. Prototypical Group A hydrogenases have high turnover rates and remarkable energy efficiency.

View Article and Find Full Text PDF

Unlabelled: The biases revealed in protein sequence alignments have been shown to provide information related to protein structure, stability, and function. For example, sequence biases at individual positions can be used to design consensus proteins that are often more stable than naturally occurring counterparts. Likewise, correlations between pairs of residue can be used to predict protein structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!