To ascertain the role of pectin disassembly in fruit softening, chelated- (CSP) and sodium carbonate-soluble (SSP) pectins from plants with a pectate lyase, FaplC, or a polygalacturonase, FaPG1, downregulated by antisense transformation were characterized at the nanostructural level. Fruits from transgenic plants were firmer than the control, although FaPG1 suppression had a greater effect on firmness. Size exclusion chromatography showed that the average molecular masses of both transgenic pectins were higher than that of the control. Atomic force microscopy analysis of pectins confirmed the higher degree of polymerization as result of pectinase silencing. The mean length values for CSP chains increased from 84 nm in the control to 95.5 and 101 nm, in antisense FaplC and antisense FaPG1 samples, respectively. Similarly, SSP polyuronides were longer in transgenic fruits (61, 67.5 and 71 nm, in the control, antisense FaplC and antisense FaPG1 samples, respectively). Transgenic pectins showed a more complex structure, with a higher percentage of branched chains than the control, especially in the case of FaPG1 silenced fruits. Supramolecular pectin aggregates, supposedly formed by homogalacturonan and rhamnogalacturonan I, were more frequently observed in antisense FaPG1 samples. The larger modifications in the nanostructure of pectins in FaPG1 silenced fruits when compared with antisense pectate lyase plants correlate with the higher impact of polygalacturonase silencing on reducing strawberry fruit softening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2015.06.018 | DOI Listing |
Polymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFCarbohydr Res
March 2025
Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT Deemed to Be University), Vellore, Tamil Nadu, India. Electronic address:
Pectate lyases, known for their alkaliphilic nature, are ideal for industrial applications that require specific pH conditions, particularly in industries such as textiles and pulp extraction. These enzymes, primarily from the polysaccharide lyase family 1 (PL1) of different microbial sources, play a vital role in polysaccharide degradation. Given the potent pectinolytic activity of Bacillus pectate lyases, targeting these enzymes is crucial for identifying the most effective candidates.
View Article and Find Full Text PDFPLoS One
December 2024
Liaoning Academy of Agricultural Sciences, Shenyang, China.
Sclerotinia sclerotiorum as a necrotrophic fungus causes the devastating diseases in many important oilseed crops worldwide. The preferred strategy for controlling S. sclerotiorum is to develop resistant varieties, but the molecular mechanisms underlying S.
View Article and Find Full Text PDFFront Microbiol
November 2024
College of Plant Protection, Gansu Agricultural University, Lanzhou, China.
Pectate lyases (PL), as important polysaccharide lyases, play an important role in the infection of host plants by pathogenic. A previous study found that the PL gene was up-regulated in the interaction between 5T-1 and potatoes. In this study, 5T-1 was used as the study object, and its gene function was investigated using bioinformatics analysis, prokaryotic expression, and CRISPR-Cas9 technology.
View Article and Find Full Text PDFPlant J
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
The plant cell wall is the first barrier against pathogen invasion. Fusarium solani is the primary pathogen responsible for apple replant disease. In this study, we identified an MYB protein, MdMYB54, which interacts with the positive regulator of F.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!