A facile synthesis of highly stable silver nanoparticles (AgNPs) was reported using a biopolymer, xylan as both a reducing and stabilizing agent. Xylan was isolated from waste biomass, wheat bran (WB) by alkaline treatment and was characterized by Fehling's test, dinitrosalicylic acid assay, FTIR, (1)H NMR and (13)C NMR. The synthesized nanoparticles were characterized by UV-Vis spectroscopy and transmission electron microscopy. The nanoparticles were polydispersed with the size ranging from 20 to 45 nm. The synthesized WB-xylan AgNPs showed excellent free radical scavenging activity. In addition, WB-xylan AgNPs showed fibrinolytic activity as evidenced by the zone of clearance in fibrin plate assay. The biomedical potential of the WB-xylan AgNPs was demonstrated by dissolution of preformed blood clots. These results suggest that the development of xylan-metal nanoparticle composite would be feasible to treat thrombus related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2015.06.069 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!