A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Acinetobacter haemolyticus MG606 produces a novel, phosphate binding exobiopolymer. | LitMetric

Acinetobacter haemolyticus MG606 produces a novel, phosphate binding exobiopolymer.

Carbohydr Polym

Department of Biotechnology, Thapar University, Bhadson Road, Patiala 147004, Punjab, India. Electronic address:

Published: November 2015

The present study evaluated an extracellular, novel biopolymer produced by Acinetobacter haemolyticus MG606 for its physicochemical properties and phosphate binding mechanism. The exobiopolymer (EBP) was characterized to be majorly polysaccharide in nature consisting of 48.9 kDa heteropolysaccharide composed of galactose, glucose, xylose, lyxose, allose, ribose, arabinose, mannose and fructose. Maximum phosphate binding efficiency of 25mg phosphate/g of EBP was described by Langmuir isotherm and further, the physicochemical and spectroscopic studies revealed that phosphate appeared to bind predominantly with the polysaccharide fraction, and to a relatively lesser extent to protein fraction of EBP. The electrostatic interactions with amino groups and ligand exchange with hydroxyl groups of EBP were found to be primary basis for phosphate binding mechanism. The results of this study implicate the feasibility of the EBP for commercial bioremediation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2015.06.002DOI Listing

Publication Analysis

Top Keywords

phosphate binding
16
acinetobacter haemolyticus
8
haemolyticus mg606
8
binding mechanism
8
phosphate
5
ebp
5
mg606 produces
4
produces novel
4
novel phosphate
4
binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!