The fabrication of antibacterial yet biocompatible and bioactive surfaces is a challenge that biological and biomedical community has faced for many years, while no "dream material" has been developed so far. The primary goal of this study was to establish an optimal range of Ag concentration and its state of agglomeration in bioactive nanocomposite TiCaPCON films which would provide a strong bactericidal effect without compromising the material biocompatibility and bioactivity. To obtain samples with different Ag content and redistribution, two different methods were employed: (i) TiCaPCON films deposition by magnetron sputtering of composite TiС0.5-Ca3(РО4)2 target followed by Ag(+) ion implantation and (ii) Ag-doped TiCaPCON films obtained by co-sputtering of composite TiС0.5-Ca3(РО4)2 and Ag targets. In order to reveal the antibacterial role of Ag nanoparticles and Ag(+) ions, both separate and in synergy, part of the samples from the first and second groups was subjected to additional ion etching to remove an Ag rich surface layer heavily populated with Ag nanoparticles. All resultant films were characterized with respect to surface morphology, chemical composition, surface roughness, wettability, and Ag(+) ion release. The antibacterial and antifungal effects of the Ag-doped TiCaPCON films were evaluated against clinically isolated Escherichia coli O78 (E. coli) and Neurospora crassa wt-987 spores. The influence of the surface chemistry on spreading, proliferation, and early stages of MC3T3-E1 osteoblastic cell differentiation was also studied. Our data demonstrated that under optimal conditions in terms of Ag content and agglomeration, the Ag-doped TiCaPCON films are highly efficient against E. coli bacteria and, at the same time, provide good adhesion, spreading, proliferation and differentiation of osteoblastic cells which reflect high level of biocompatibility and bioactivity of the films. The influence of Ag(+) ions and nanoparticles on the MC3T3-E1 osteoblastic cells and E. coli bacteria is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.06.059 | DOI Listing |
ACS Appl Mater Interfaces
August 2019
National University of Science and Technology "MISIS", Leninsky prospect 4 , Moscow 119049 , Russia.
A rapid increase in the number of antibiotic-resistant bacteria urgently requires the development of new more effective yet safe materials to fight infection. Herein, we uncovered the contribution of different metal nanoparticles (NPs) (Pt, Fe, and their combination) homogeneously distributed over the surface of nanostructured TiCaPCON films in the total antibacterial activity toward eight types of clinically isolated bacterial strains ( K261, B1079k/17-3, B1280A/17, no. 839, i5189-1, Ya-235: VanA, I-237: VanA, and U20) taking into account various factors that can affect bacterial mechanisms: surface chemistry and phase composition, wettability, ion release, generation of reactive oxygen species (ROS), potential difference and polarity change between NPs and the surrounding matrix, formation of microgalvanic couples on the sample surfaces, and contribution of a passive oxide layer, formed on the surface of films, to general kinetics of the NP dissolution.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2018
National University of Science and Technology "MISIS", Leninsky prospect 4 , Moscow 119049 , Russia.
It is very important to prevent bacterial colonization at the early postoperative stages. There are four major strategies and their corresponding types of antibacterial surfaces specifically designed to fight infection: bactericide release, anti-adhesion, pH-sensitive, and contact-killing. Herein, we aimed at determining the antibacterial efficiency of different types of bactericidal ions and revealing the possible contribution of surface microgalvanic effects arising from a potential difference on heterogeneous surfaces.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2018
National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia. Electronic address:
Implant-related bacterial infections remain a serious problem that is not solved yet. Herein we combined several antibacterial agents to achieve synergistic effects and broader protection of widely used metallic implants. Titanium samples with microcontainers for drug, produced by selective laser sintering, were coated with Ag-doped biocompatible and bioactive TiCaPCON film and loaded with an antibiotic (gentamicin or a mixture of gentamicin and amphotericin B).
View Article and Find Full Text PDFBiomed Mater
June 2017
National University of Science and Technology 'MISIS', Leninsky prospect 4, Moscow 119049, Russia.
For the first time the surface of decellularized extracellular matrix (DECM) was modified via deposition of a multicomponent bioactive nanostructured film for improvement of the DECM's mechanical properties. TiCaPCON films were deposited onto the surface of intact and decellularized ulna, radius, and humerus bones by magnetron sputtering of TiC + 10%Ca(PO) and Ti targets in a gaseous mixture of Ar + N. The film structure was studied using x-ray diffraction, scanning and transmission electron microscopy, and Raman spectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2017
National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia.
Silver is the most famous bactericidal element known from ancient times. Its antibacterial and antifungal effects are typically associated with the Ag ionization and concentration of Ag ions in a bacterial culture. Herein we thoroughly studied the influence of surface topography and roughness on the rate of Ag ion release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!