Cognitive impairments are prevalent following clinical stroke; however, preclinical research has focused almost exclusively on motor deficits. In order to conduct systematic evaluations into the nature of post-stroke cognitive dysfunction and recovery, it is crucial to develop focal stroke models that predominantly affect cognition while leaving motor function intact. Herein, we evaluated a range of cognitive functions 1-4 months following focal medial prefrontal cortex (mPFC) stroke using a battery of tests. Male Sprague-Dawley rats underwent focal ischemia induced in the mPFC using bilateral intracerebral injections of endothelin-1, or sham surgery. Cognitive function was assessed using an open field, several object recognition tests, attentional set-shifting, light-dark box, spontaneous alternation, Barnes maze, and win-shift/win-stay tests. Prefrontal cortex damage resulted in significant changes in object recognition function, behavioural flexibility, and anxiety-like behaviour, while spontaneous alternation and locomotor function remained intact. These deficits are similar to the cognitive deficits following stroke in humans. Our results suggest that this model may be useful for identifying and developing potential therapies for improving post-stroke cognitive dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2015.07.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!