RNA-binding residues prediction using structural features.

BMC Bioinformatics

School of Software Engineering, Tongji University, Shanghai, 201804, China.

Published: August 2015

Background: RNA-protein complexes play an essential role in many biological processes. To explore potential functions of RNA-protein complexes, it's important to identify RNA-binding residues in proteins.

Results: In this work, we propose a set of new structural features for RNA-binding residue prediction. A set of template patches are first extracted from RNA-binding interfaces. To construct structural features for a residue, we compare its surrounding patches with each template patch and use the accumulated distances as its structural features. These new features provide sufficient structural information of surrounding surface of a residue and they can be used to measure the structural similarity between the surface surrounding two residues. The new structural features, together with other sequence features, are used to predict RNA-binding residues using ensemble learning technique.

Conclusions: The experimental results reveal the effectiveness of the proposed structural features. In addition, the clustering results on template patches exhibit distinct structural patterns of RNA-binding sites, although the sequences of template patches in the same cluster are not conserved. We speculate that RNAs may have structure preferences when binding with proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529986PMC
http://dx.doi.org/10.1186/s12859-015-0691-0DOI Listing

Publication Analysis

Top Keywords

structural features
24
rna-binding residues
12
template patches
12
structural
9
features
8
rna-protein complexes
8
rna-binding
6
residues prediction
4
prediction structural
4
features background
4

Similar Publications

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

The development of diverse microstructures has substantially contributed to recent progress in high-performance electromagnetic wave (EMW) absorption materials, providing a versatile platform for the modulation of absorption properties. Exploring multidimensional microstructures and developing tailored and gentle strategies for their precise optimization can substantially address the current challenges posed by relatively unclear underlying mechanisms. Here, a series of 2D/1D heterogeneous NiO@PPy composites featuring hollow hierarchical microstructures are successfully synthesized using a straightforward strategy combining sacrificial templating with chemical oxidative polymerization.

View Article and Find Full Text PDF

Birnaviruses infect a broad range of vertebrate hosts, including fish and birds, and cause substantial economic losses in the fishery and livestock industries. The infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, specifically infects salmonids. While structures on T=1 subviral particles of the birnaviruses, including IPNV, have been studied, structural insights into the infectious T=13 particles have been limited to the infectious bursal disease virus (IBDV), an avibirnavirus.

View Article and Find Full Text PDF

Circulating sexual stages of ) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of in the form of gametes and gametocyte extracts.

View Article and Find Full Text PDF

Synthesis of Nonplanar Push-Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction.

J Org Chem

January 2025

Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!