Background: Ribonucleotide reductase large subunit (RRM1) is the main enzyme responsible for synthesis of the deoxyribonucleotides used during DNA synthesis. It is also a cellular target for gemcitabine (GEM). Overexpression of RRM1 is reportedly associated with resistance to GEM and the poor prognosis for many types of malignant tumours. Aim of the present study is to establish gene therapy against RRM1-overexpressing tumours.

Method: An adenoviral vector that encoded a short hairpin siRNA targeting the RRM1 gene (Ad-shRRM1) was constructed. Two RRM1-overexpressing non-small cell lung cancer (NSCLC) lines, MAC10 and RERF-LC-MA, were used. Finally, a human tumour xenograft model in nude mice was prepared by subcutaneously implanting tumours derived from RERF-LC-MA cells.

Results: Ad-shRRM1 effectively downregulated RRM1 mRNA and protein in both types of NSCLC cells and significantly reduced the percentage of viable cells as detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (p<0.005). Caspase 3/7 analysis revealed that transfection with Ad-RRM1 increased the percentage of apoptotic cells in culture containing either type of RRM1-overexpressing cell (p<0.001). Treatment with Ad-shRRM1 exerted a potent antitumour effect against the RRM1-overexpressing RERF-LC-MA xenografts (p<0.05). Furthermore, Ad-shRRM1-mediated inhibition of RRM1 specifically increased sensitivity to gemcitabine of each type of RRM1-overexpressing tumour cell. Combination treatment with Ad-shRRM1 and GEM exerted significantly greater inhibition on cell proliferation than Ad-shRRM1 or GEM treatment alone.

Conclusion: RRM1 appeared to be a promising target for gene therapy, and Ad-shRRM1 had strong antitumour effects, specifically anti-proliferative and pro-apoptotic effects, against NSCLC cells that overexpressed RRM1. Combination therapy with Ad-shRRM1 and GEM may become a new treatment option for patients with NSCLC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2015.05.013DOI Listing

Publication Analysis

Top Keywords

adenoviral vector
8
short hairpin
8
ribonucleotide reductase
8
reductase large
8
large subunit
8
non-small cell
8
cell lung
8
lung cancer
8
potent adenoviral
4
vector expressing
4

Similar Publications

Adenovirus-based therapies have encountered significant challenges due to host immunity, particularly from pre-existing antibodies. Many trials have struggled to evade antibody response; however, the efficiency of these efforts was limited by the diversity of antibody Fv-region recognizing multiple amino acid sequences. In this study, we developed an antibody-evading adenovirus vector by encoding a plasma-rich protein transferrin-binding domain.

View Article and Find Full Text PDF

Viral vector delivery of gene therapy represents a promising approach for the treatment of numerous retinal diseases. Adeno-associated viral vectors (AAV) constitute the primary gene delivery platform; however, their limited cargo capacity restricts the delivery of several clinically relevant retinal genes. In this study, we explore the feasibility of employing high-capacity adenoviral vectors (HC-AdVs) as alternative delivery vehicles, which, with a capacity of up to 36 kb, can potentially accommodate all known retinal gene coding sequences.

View Article and Find Full Text PDF

Background: Determining the complete genome sequence data of adenoviruses has recently become greatly important due to their use by scientists as vectors in cancer studies and other fields, including vaccine development. However, the GenBank database currently has few complete genome sequences of adenoviruses, which are known for their large genomes. To address this gap, we analysed next-generation sequencing data obtained from our previous study to provide the complete genome sequence of the canine adenovirus-2 strain.

View Article and Find Full Text PDF

Unexpected renal side effects of mRNA COVID-19 vaccines; a single-center experience and short review.

Am J Med Sci

January 2025

Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.

Background: In late 2019, the World Health Organization declared Coronavirus disease 2019 a global emergency. Since then, many vaccines have been developed to combat the pandemic. Millions of people have received one of the approved COVID-19 vaccines; unfortunately, some adverse events also have been recorded.

View Article and Find Full Text PDF

Proto-oncogene KRAS, GTPase (KRAS) is one of the most intensively studied oncogenes in cancer research. Although several mouse models allow for regulated expression of mutant KRAS, selective isolation and analysis of transforming or tumor cells that produce the KRAS oncogene remains a challenge. In our study, we present a knock-in model of oncogenic variant KRAS that enables the "activation" of KRAS expression together with production of red fluorescent protein tdTomato.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!