Right ventricular diastolic dysfunction (RVDD) is an important prognostic indicator in pulmonary arterial hypertension (PAH). RV vortex rings have been observed in healthy subjects, but their significance in RVDD is unknown. Vorticity, the local spinning motion of an element of fluid, may be a sensitive measure of RV vortex dynamics. Using four-dimensional (4D) flow cardiac magnetic resonance imaging (CMR), we investigated the relationship between right heart vorticity with echocardiographic indexes of RVDD. Thirteen (13) PAH subjects and 10 controls underwent same-day 4D flow CMR and echocardiography. RV diastolic function was assessed using trans-tricuspid valve (TV) early (E) and late (A) velocities, E/A ratio, and e' and a' tissue Doppler velocities. RV and right atrial (RA) integrated mean vorticity was calculated for E and A-wave filling periods using 4D datasets. Compared with controls, A-wave vorticity was significantly increased in RVDD subjects in both the RV [2343 (1,559-3,295) vs. 492 (267-2,649) 1/s, P = 0.028] and RA [30 (27-44) vs. 9 (5-27) 1/s, P = 0.005]. RA E vorticity was significantly decreased [13 (7-22) vs. 28 (15-31) 1/s, P = 0.038] in RVDD. E-wave vorticity correlated TV e', E-,and TV E/A (P < 0.05), and A-wave vorticity associated with both TV A and E/A (P < 0.02). RVDD is associated with alterations in E- and A-wave vorticity, and vorticity correlates with multiple echocardiographic markers of RVDD. Vorticity may be a robust noninvasive research tool for the investigation of RV fluid and tissue mechanical interactions in PAH.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00278.2015DOI Listing

Publication Analysis

Top Keywords

a-wave vorticity
12
vorticity
11
ventricular diastolic
8
diastolic dysfunction
8
rvdd
7
vorticity marker
4
marker ventricular
4
dysfunction ventricular
4
dysfunction rvdd
4
rvdd prognostic
4

Similar Publications

Wind over the ocean generates near-inertial velocities. In the open ocean, horizontal variability in the inertial frequency and mesoscale vorticity generate internal waves that transport energy laterally and drive diapcynal mixing in remote locations. In the coastal ocean, horizontal variability is produced by the coastline.

View Article and Find Full Text PDF

Background: The long-term monitoring of biventricular function is essential to identify potential functional decline in patients following the arterial switch operation (ASO). The underlying pathophysiological mechanisms responsible for altered biventricular hemodynamics in ASO patients are not yet well understood. This study sought to: (I) compare the biventricular kinetic energy (KE) and vorticity of ASO patients and age- and sex-matched controls; (II) investigate the associations of four-dimensional (4D) flow biventricular hemodynamics parameters and neo-aortic root dilation, supravalvular pulmonary stenosis, and pulmonary artery transvalvular pressure difference.

View Article and Find Full Text PDF

Left ventricle diastolic vortex ring characterization in ischemic cardiomyopathy: insight into atrio-ventricular interplay.

Med Biol Eng Comput

December 2024

3D and Computer Simulation Laboratory, IRCCS, Policlinico San Donato, Piazza E. Malan 2, San Donato Milanese, Italy.

Diastolic vortex ring (VR) plays a key role in the blood-pumping function exerted by the left ventricle (LV), with altered VR structures being associated with LV dysfunction. Herein, we sought to characterize the VR diastolic alterations in ischemic cardiomyopathy (ICM) patients with systo-diastolic LV dysfunction, as compared to healthy controls, in order to provide a more comprehensive understanding of LV diastolic function. 4D Flow MRI data were acquired in ICM patients (n = 15) and healthy controls (n = 15).

View Article and Find Full Text PDF

When surface waves interact with ambient turbulence, the two affect each other mutually. Turbulent eddies get redirected, intensified and periodically stretched and compressed, while the waves suffer directional scattering. We study these mutual interactions experimentally in the water channel laboratory at the Norwegian University of Science and Technology (NTNU) Trondheim.

View Article and Find Full Text PDF

Fisher Information Perspective of Pauli's Electron.

Entropy (Basel)

November 2022

Department of Electrical & Electronic Engineering, Faculty of Engineering, Ariel University, Ariel 40700, Israel.

An electron moving at velocities much lower that the speed of light with a spin, is described by a wave function which is a solution of Pauli's equation. It has been demonstrated that this system can be viewed as a vortical fluid which has remarkable similarities but also differences with classical ideal flows. In this respect, it was shown that the internal energy of the Pauli fluid can be interpreted, to some degree, as Fisher Information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!