A novel acoustic-vibratory multimodal duet.

J Exp Biol

Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India.

Published: October 2015

The communication strategy of most crickets and bushcrickets typically consists of males broadcasting loud acoustic calling songs, while females perform phonotaxis, moving towards the source of the call. Males of the pseudophylline bushcricket species Onomarchus uninotatus produce an unusually low-pitched call, and we found that the immediate and most robust response of females to the male acoustic call was a bodily vibration, or tremulation, following each syllable of the call. We hypothesized that these bodily oscillations might send out a vibrational signal along the substrate on which the female stands, which males could use to localize her position. We quantified these vibrational signals using a laser vibrometer and found a clear phase relationship of alternation between the chirps of the male acoustic call and the female vibrational response. This system therefore constitutes a novel multimodal duet with a reliable temporal structure. We also found that males could localize the source of vibration but only if both the acoustic and vibratory components of the duet were played back. This unique multimodal duetting system may have evolved in response to higher levels of bat predation on searching bushcricket females than calling males, shifting part of the risk associated with partner localization onto the male. This is the first known example of bushcricket female tremulation in response to a long-range male acoustic signal and the first known example of a multimodal duet among animals.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.122911DOI Listing

Publication Analysis

Top Keywords

multimodal duet
12
male acoustic
12
acoustic call
8
males localize
8
males
5
acoustic
5
call
5
novel acoustic-vibratory
4
multimodal
4
acoustic-vibratory multimodal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!