Purpose: This study utilizes a survival model and clinical data with various radiation doses from prospective trials to determine radiation dose-response parameters, such as radiosensitivity, and identify single-nucleotide-polymorphism (SNP) biomarkers that can potentially predict the dose response and guide personalized radiotherapy.

Methods: The study included 92 consecutive stage-III NSCLC patients with doses varying from 60 to 91Gy. Logistic regression analysis of survival varying with SNP genotype and radiation dose was used to screen candidates for dose-response analysis. The dose-response parameter, represented by D50, was derived by fitting survival data into a model that takes into account both tumor control and treatment mortality. A candidate would be considered as a predictor if the 90% confident intervals (90% CIs) of D50 for the 2 groups stratified by the SNP genotype were separated.

Results: One SNP-signature (combining ERCC2:rs238406 and ERCC1:rs11615) was found to predict dose-response. D50 values are 63.7 (90% CI: 53.5-66.3) Gy and 76.1 (90% CI: 71.3, 84.6) Gy for the 2 groups stratified by the genotypes. Using this biomarker-based model, a personalized dose prescription may be generated to improve 2-year survival from ∼50% to 85% and ∼3% to 73% for hypothetical sensitive and resistant patients, respectively.

Conclusions: We have developed a survival model that may be used to identify genomic markers, such as ERCC1/2 SNPs, to predict radiation dose-response and potentially guide personalized radiotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702521PMC
http://dx.doi.org/10.1016/j.radonc.2015.07.024DOI Listing

Publication Analysis

Top Keywords

survival model
12
radiation dose-response
12
guide personalized
8
snp genotype
8
groups stratified
8
survival
6
dose-response
6
radiation
5
model correlate
4
correlate single-nucleotide
4

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.

View Article and Find Full Text PDF

CASP5 associated with PANoptosis promotes tumorigenesis and progression of clear cell renal cell carcinoma.

Cancer Cell Int

January 2025

Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, 9 West Section Lvshun South Road, Dalian, 116044, China.

Clear cell renal cell carcinoma (ccRCC) is a globally severe cancer with an unfavorable prognosis. PANoptosis, a form of cell death regulated by PANoptosomes, plays a role in numerous cancer types. However, the specific roles of genes associated with PANoptosis in the development and advancement of ccRCC remain unclear.

View Article and Find Full Text PDF

Background: Among hypertensive cohorts across different nations, the relationship between the triglyceride-glucose index (TyG) and its conjunction with obesity metrics in relation to cardiovascular disease (CVD) incidence and mortality remains to be elucidated.

Methods: This study enrolled 9,283, 164,357, and 5,334 hypertensives from the National Health and Nutrition Examination Survey (NHANES), UK Biobank (UKBB), and Shanghai Pudong cohort. The related outcomes for CVD were defined by multivariate Cox proportional hazards models, Generalized Additive Models and Mendelian randomization analysis.

View Article and Find Full Text PDF

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!