Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To study the effect of interlayer spacing of pillared graphene oxides (GOs) on CO2 uptake, we have obtained CO2 isotherms with respect to the interlayer distance of pillared graphene oxide by both experimental and simulation methods. Interlayer distances of GO were modulated by intercalation of three kinds of diaminoalkanes with a different number of carbon atoms (NH2(CH2) n NH2, n = 4, 8, and 12) as pillars. The intercalated GOs (IGOs) and their reduced products (RIGOs) are characterized using a variety of approaches such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and N2 adsorption. Gas adsorption performance shows that the CO2 uptake of IGOs and RIGOs decrease with the increase of the interlayer distance at low pressure, while at high pressure, the adsorption capacity of IGO-12 has a larger growth than those of both IGO-4 and IGO-8 and surpasses them at 30 bar. The contribution of the electrostatics to CO2 adsorption is larger than that of van der Waals force at low pressures, whereas for the high pressures, the adsorption is dominated by van der Waals force.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529426 | PMC |
http://dx.doi.org/10.1186/s11671-015-1026-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!