Resting-state fMRI is a promising imaging technique to evaluate functions in the human brain in health and disease. Different hormonal stages of the female menstrual cycle and hormonal contraceptives use affect results in task-based fMRI; it is however not yet clarified whether resting state networks are also altered. A population of 18 women with a natural cycle, and 19 women using hormonal contraceptives was examined in a longitudinal study-design. The natural cycle group was scanned at 3 time-points (follicular phase, ovulation, luteal phase), and the contraceptives group was scanned twice (inactive pill-phase, active pill-phase). Blood samples were acquired to evaluate hormonal concentrations, and premenstrual symptoms were assessed through daily record of severity of problems questionnaires. Results show no major alterations in the default mode network and the executive control network between different hormonal phases, across or within groups. A positive correlation of functional connectivity in the posterior part of the default mode network (DMN) was found with premenstrual-like symptoms in the hormonal contraceptives group. Using the current methodology, the studied resting state networks seem to show a decent stability throughout menstrual cycle phases. Also, no effect of hormonal contraceptive use is found. Interestingly, we show for the first time an association of DMN alterations with premenstrual-like symptoms, experienced during the inactive pill-phase by a sub-population of women.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2015.07.045DOI Listing

Publication Analysis

Top Keywords

resting state
12
state networks
12
hormonal contraceptives
12
hormonal
8
premenstrual symptoms
8
menstrual cycle
8
natural cycle
8
group scanned
8
contraceptives group
8
inactive pill-phase
8

Similar Publications

Shorter and inflexible intrinsic neural timescales of the self in schizophrenia.

J Psychiatry Neurosci

January 2025

From the Faculty of Medicine, University of Ottawa, Ottawa, Ont. (Djimbouon); the Mind, Brain Imaging and Neuroethics Unit, Institute of Mental Health Research, Royal Ottawa Mental Health Centre, University of Ottawa, Ottawa, Ont. (Djimbouon, Northoff); the Faculty of Mathematics and Natural Sciences, Institute of Experimental Psychology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany (Klar); and the Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany (Klar).

Background: Schizophrenia is hypothesized to involve a disturbance in the temporal dynamics of self-processing, specifically within the interoceptive, exteroceptive, and cognitive layers of the self. This study aimed to investigate the intrinsic neural timescales (INTs) within these self-processing layers among people with schizophrenia.

Methods: We conducted a functional magnetic resonance imaging (fMRI) study to investigate INTs, as measured by the autocorrelation window, among people with schizophrenia and healthy controls during both resting-state and task (memory encoding and retrieval) conditions.

View Article and Find Full Text PDF

Structural and functional alterations in hypothalamic subregions in male patients with alcohol use disorder.

Drug Alcohol Depend

January 2025

Department of Neurology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Background: The hypothalamus is involved in stress regulation and reward processing, with its various nuclei exhibiting unique functions and connections. However, human neuroimaging studies on the hypothalamic subregions are limited in drug addiction. This study examined the volumes and functional connectivity of hypothalamic subregions in individuals with alcohol use disorder (AUD).

View Article and Find Full Text PDF

Exposure to residential air pollution and the development of functional connectivity of brain networks throughout adolescence.

Environ Int

January 2025

ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ICREA, Barcelona, Spain. Electronic address:

Background: A few studies linked air pollution to differences in functional connectivity of resting-state brain networks in children, but how air pollution exposure affects the development of brain networks remains poorly understood. Therefore, we studied the association of air pollution exposure from birth to 3 years and one year before the first imaging assessment with the development of functional connectivity across adolescence.

Methods: We utilized data from 3,626 children of the Generation R Study (The Netherlands).

View Article and Find Full Text PDF

Wearable heart rate variability analysis system based on ionic conductive hydrogels.

Talanta

January 2025

Academy of Medical Engineering and Translational Medicine, Medical School, Tianjin University, Tianjin, 300072, China; School of Exercise and Health, Tianjin University of Sport, Tianjin, 300211, China. Electronic address:

Developing a wearable device that can continuously and reliably detect and evaluate heart rate variability (HRV) parameters is critical for the diabetic population with cardiac autonomic neuropathy (CAN). In this work, we proposed a zwitterionic conducting hydrogel that enabled a reliable and comfortable wearable device for the evaluation and detection of the autonomic nervous system (ANS). The hydrogel can achieve a strain of 2003 %, an electrical conductivity of 190 mS/m, and is capable of adhering to a variety of materials, including wood, plastic, and glass.

View Article and Find Full Text PDF

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!