Impact of cuticle on calculations of the CO2 concentration inside leaves.

Planta

College of Earth, Ocean and Environment (Formerly Marine Biology/Biochemistry Program, College of Marine Studies), University of Delaware, Lewes, DE, 19958, USA.

Published: December 2015

Water vapor over-estimates the CO 2 entering leaves during photosynthesis because the cuticle and epidermis transmit more water vapor than CO 2 . Direct measurements of internal CO 2 concentrations may be preferred. The CO2 concentration inside leaves (c i) is typically calculated from the relationship between water vapor diffusing out while CO2 diffuses in. Diffusion through the cuticle/epidermis is usually not considered. This study was undertaken to determine how much the calculations would be affected by including cuticle properties. Previous studies indicate that measurable amounts of CO2 and water vapor move through the cuticle, although much less CO2 than water vapor. The present experiments were conducted with sunflower (Helianthus annuus L) leaves in a gas exchange apparatus designed to directly measure c i, while simultaneously calculating c i. Results showed that, in normal air, calculated c i were always higher than directly measured ones, especially when abscisic acid was fed to the leaves to close the stomata and cause gas exchange to be dominated by the cuticle. The effect was attributed mostly to the reliance on the gas phase for the calculations without taking cuticle properties into account. Because cuticle properties are usually unknown and vary with the turgor of the leaf, which can stretch the waxes, it is difficult to include cuticle properties in the calculation. It was concluded that direct measurement of c i may be preferable to the calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-015-2378-1DOI Listing

Publication Analysis

Top Keywords

water vapor
20
cuticle properties
16
co2 concentration
8
concentration inside
8
inside leaves
8
co2 water
8
gas exchange
8
cuticle
7
co2
5
leaves
5

Similar Publications

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

Towards a Greener Future: Sustainable Innovations in the Extraction of Lavender ( spp.) Essential Oil.

Foods

January 2025

Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.

Lavender is one of the most appreciated aromatic plants, with high economic value in food, cosmetics, perfumery, and pharmaceutical industries. Lavender essential oil (LEO) is known to have demonstrative antimicrobial, antioxidant, therapeutic, flavor and fragrance properties. Conventional extraction methods, e.

View Article and Find Full Text PDF

The Properties of Damaged Starch Granules: The Relationship Between Granule Structure and Water-Starch Polymer Interactions.

Foods

December 2024

Instituto de Ciencia y Tecnología de los Alimentos Córdoba (ICYTAC-CONICET), Universidad Nacional de Córdoba, Av. Filloy S/N, Ciudad Universitaria, Córdoba CP 5000, Argentina.

The morphology of wheat starch granules with different damaged starch (DS) content was analyzed using a particle size analyzer and scanning electron microscopy (SEM); the granular structure was studied using FT-IR spectroscopy and X-ray diffraction (XRD); and the granule-water interaction was evaluated by thermogravimetric analysis (TGA) and dynamic vapor sorption (DVS). The increase in the level of DS shifted the population of B-type granules towards larger particle diameters and shifted the population of A-type granules towards smaller particle diameters. The appearance of the surface of the starch-damaged granules was rough and flaky (SEM images).

View Article and Find Full Text PDF

The cavitation water jet cleaning and coating removal technique represents an innovative sustainable method for cleaning and removing coatings, with the nozzle serving as a crucial component of this technology. Developing an artificially submerged nozzle with a reliable structure and excellent cavitation performance is essential for enhancing cavitation water jets' cleaning and coating removal efficacy in an atmosphere environment (non-submerged state). This study is based on the shear flow cavitation mechanism of an angular nozzle, the resonance principle of an organ pipe, and the jet pump principle.

View Article and Find Full Text PDF

This study focuses on selecting a suitable 3D printer and defining experimental methods to gather the necessary data for determining the optimal filament material for printing components of the VEX GO and VEX IQ robotic kits. The aim is to obtain the required data to identify an appropriate filament material and set 3D printing parameters to achieve the desired mechanical properties of the parts while maintaining cost-effectiveness. Another key objective is achieving optimal operational functionality, ensuring the required part performance with minimal printing costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!