A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative analysis of high-resolution microendoscopic images for diagnosis of neoplasia in patients with Barrett's esophagus. | LitMetric

AI Article Synopsis

  • Previous studies relied on subjective visual interpretation of microendoscopic images to detect neoplasia in Barrett's esophagus (BE), necessitating clinical expertise.
  • This study developed a quantitative image analysis method using a fully automated algorithm that analyzes microendoscopic images from BE patients to identify neoplastic lesions.
  • The algorithm achieved a sensitivity of 84% and specificity of 85% in initial tests, improving to 88% sensitivity with the validation set, showing promise for objective evaluation of esophageal lesions.

Article Abstract

Background And Aims: Previous studies show that microendoscopic images can be interpreted visually to identify the presence of neoplasia in patients with Barrett's esophagus (BE), but this approach is subjective and requires clinical expertise. This study describes an approach for quantitative image analysis of microendoscopic images to identify neoplastic lesions in patients with BE.

Methods: Images were acquired from 230 sites from 58 patients by using a fiberoptic high-resolution microendoscope during standard endoscopic procedures. Images were analyzed by a fully automated image processing algorithm, which automatically selected a region of interest and calculated quantitative image features. Image features were used to develop an algorithm to identify the presence of neoplasia; results were compared with a histopathology diagnosis.

Results: A sequential classification algorithm that used image features related to glandular and cellular morphology resulted in a sensitivity of 84% and a specificity of 85%. Applying the algorithm to an independent validation set resulted in a sensitivity of 88% and a specificity of 85%.

Conclusions: This pilot study demonstrates that automated analysis of microendoscopic images can provide an objective, quantitative framework to assist clinicians in evaluating esophageal lesions from patients with BE. (

Clinical Trial Registration Number: NCT01384227 and NCT02018367.).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4691546PMC
http://dx.doi.org/10.1016/j.gie.2015.06.045DOI Listing

Publication Analysis

Top Keywords

microendoscopic images
16
image features
12
neoplasia patients
8
patients barrett's
8
barrett's esophagus
8
identify presence
8
presence neoplasia
8
quantitative image
8
analysis microendoscopic
8
lesions patients
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: