Tetrabromobisphenol A (TBBPA) and its replacement alternative tetrabromobisphenol S (TBBPS) are used widely as brominated flame retardants (BFRs). However, the potential risk of their effects on bovine trypsin remains largely unknown. We investigated the effects of TBBPA and TBBPS to bovine trypsin by the fluorescence spectroscopy, circular dichroism and molecular dynamics (MD) simulations. They statically quenched the intrinsic fluorescence of bovine trypsin in a concentration-dependent mode and caused slight red-shifted fluorescence. The short and long fluorescence lifetime decay components of bovine trypsin were both affected, partly due to the disturbed microenvironmental changes of Trp215. The β-sheet content of bovine trypsin was significantly reduced from 82.4% to 75.7% and 76.6% by TBBPA and TBBPS, respectively, possibly impairing the physiological function of bovine trypsin. TBBPA and TBBPS bind at the 8-anilinonaphthalene-1-sulfonate (ANS) binding site with an association constant of 1.09×10(4) M(-1) and 2.41×10(4) M(-1) at 298 K, respectively. MD simulations revealed that van der Waals interactions and hydrogen bond interactions are dominant for TBBPA, whereas electrostatic interactions are critical for TBBPS. Our in vitro and in silico studies are beneficial to the understanding of risk assessment and future design of environmental benign BFRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2015.07.050 | DOI Listing |
Anal Chem
January 2025
Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road, Shanghai 200237, P. R. China.
Protein methylation has attracted increasing attention due to its significant regulatory roles in various biological processes. However, the diversity of methylation forms, subtle differences between methylated and nonmodified sites, and their ultralow abundances pose substantial challenges for capturing and isolating methylated peptides from biological samples. Herein, we develop a chromatographic method that utilizes 4-sulfonylcalix[4]arene (SC4A) as a mobile phase additive and Click-Maltose as the stationary phase to separate methylated/nonmethylated peptides through the adsorption of the SC4A-(Me3) complex.
View Article and Find Full Text PDFVet World
November 2024
Department of Microbiology and Biotechnology, Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agrotechnical Research University, 62 Zhenis Avenue, Astana 010011, Kazakhstan.
Background And Aim: In animal husbandry, antibiotics are frequently used as growth promoters, as well as for illness prevention and treatment. They are considered important toxic and allergenic contaminants of food and a serious risk factor for the spread of antibiotic resistance. National and international regulatory authorities have established limits on the permissible residue of antibiotics in food.
View Article and Find Full Text PDFJ Microorg Control
January 2025
Division of Microbiology, National Institute of Health Sciences.
Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
Prior to mass spectrometry (MS) analysis, pretreatment of low-abundance glycopeptides is vital for identifying protein glycosylation. In this study, we fabricated an environmentally friendly citric-acid-modified cellulose monolith (CCM) characterized by a coral-like porous structure and high-density hydrophilic groups using a thermally induced phase separation (TIPS) method. The CCM production leverages biomass resources, specifically cellulose and citric acid, utilizing TIPS to synthesize continuous porous materials through a straightforward heating and cooling process of polymer solutions.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
Matrix Assisted Laser Desorption/Ionisation-Mass Spectrometry Imaging (MALDI-MSI) is a well-established spatial omic technique which enables the untargeted mapping of various classes of biomolecules, including tryptic peptides, directly on tissue. This method relies on the use of matrices for the ionisation and volatilisation of analytes, and α-Cyano-4-hydroxycinnamic acid (CHCA) represents the most widespread matrix for tryptic peptides analysis. However, CHCA also presents certain limitations that foster the quest for novel matrix compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!