AI Article Synopsis

  • The study explores how copper(II) ions can change the shape of i-motif DNA from its usual form to a hairpin structure.
  • Unlike past methods that required pH changes to fold the DNA, this approach uses metal ions.
  • The transformation is reversible, meaning the hairpin structure can go back to its original form when treated with EDTA, a chelating agent.

Article Abstract

i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(II) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563791PMC
http://dx.doi.org/10.1039/c5cc05111hDOI Listing

Publication Analysis

Top Keywords

copperii cations
8
i-motif dna
8
reversible dna
4
dna i-motif
4
i-motif hairpin
4
hairpin switching
4
switching induced
4
induced copperii
4
cations i-motif
4
dna structures
4

Similar Publications

In a quest to explore interconvertible assemblies of hydrates of cobalt(II), copper(II), and zinc(II) 2,6-pyridinedicarboxylate (), complexes having cation of a chloro-substituted analogue N-{(10-chloroanthracen-9-yl)methyl}-3-(1H-imidazol-1-yl)propan-1-amine were investigated. In the case of cobalt and copper complexes, a crystallized stable hydrate and a less stable methanol hydrate were guided by concentration-dependent crystallizations. The unit-cells of the crystals of the methanol hydrates of the two cobalt and copper complexes each belong to the P1̅ space group but have different stoichiometries as well as large differences in packing.

View Article and Find Full Text PDF

Exploring divalent metal ion coordination. Unraveling binding modes in Staphylococcus aureus MntH fragments.

J Inorg Biochem

February 2025

Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland; Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL 33199, United States. Electronic address:

Metal ion coordination is crucial in bacterial metabolism, while divalent metal ions serve as essential cofactors for various enzymes involved in cellular processes. Therefore, bacteria have developed sophisticated regulatory mechanisms to maintain metal homeostasis. These involve protein interactions for metal ion uptake, efflux, intracellular transport, and storage.

View Article and Find Full Text PDF

Novel dinuclear open copper complexes involving π-stacking on the basis of chiral binaphthyl phosphoric acid {()-PhosH}: structural, magnetic and optical properties.

Dalton Trans

November 2024

Área de Química Inorgánica, Departamento de Química, Universidad de La Laguna, C/Astrofísico Francisco Sánchez 3, 38071 La Laguna, Spain.

This research embarked on the study of a new binaphthyl phosphate scaffold of copper. There are two independent neutral complexes in the asymmetric unit: Cu1/Cu2 (I) and Cu3/Cu4 (II) from a similar structure to , with one arm formed by an intra-hydrogen bond between the water molecule bonded to the copper and the phosphine oxide (PO) moieties. Moreover, in the first complex two water and one ketone molecule complete the coordination sphere of the two-copper metals, instead, in the second one, one water and two ketone molecules.

View Article and Find Full Text PDF

Positively charged residues play a significant role in enhancing the antibacterial activity of calcitermin.

J Inorg Biochem

January 2025

Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, L. Borsari 46, 44121 Ferrara, Italy. Electronic address:

A systematic study on the human antimicrobial peptide calcitermin (VAIALKAAHYHTHKE) and its carefully designed derivatives was undertaken to verify the impact of divalent copper and zinc ions on the stability, coordination and antimicrobial activity of the formed complexes. In this work we investigate the calcitermin mutants where the alanine in position 7 and 8 is substituted with an arginine residue, with the aim of enhancing the antibacterial activity. Additionally, the analogue where alanine in position 7 is replaced with a histidine is considered, to obtain a chelating sequence with four histidines in alternate position; the aim of this change was to increase the cationic properties of the peptide under acidic conditions and possibly enhance its binding ability towards the metal ions.

View Article and Find Full Text PDF

The title compound, (CHNO)[CuCl(CHNO)]·2HO, was prepared by reacting Cu acetate dihydrate, solid 8-hy-droxy-quinoline (8-HQ), and solid pyridine-2,6-di-carb-oxy-lic acid (Hpydc), in a 1:1:1 molar ratio, in an aqueous solution of dilute hydro-chloric acid. The Cu atom exhibits a distorted CuONCl octa-hedral geometry, coordinating two oxygen atoms and one nitro-gen atom from the tridentate Hpydc ligand and three chloride atoms; the nitro-gen atom and one chloride atom occupy the axial positions with Cu-N and Cu-Cl bond lengths of 2.011 (2) Å and 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!