Agmatine-Containing Bioreducible Polymer for Gene Delivery Systems and Its Dual Degradation Behavior.

Biomacromolecules

Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, and §Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-921, Republic of Korea.

Published: September 2015

Agmatine-containing bioreducible polymer, poly(cystaminebis(acrylamide)-agmatine) (poly(CBA-AG)) was synthesized for gene delivery systems. It could form 200-300 nm sized and positively charged polyplexes with pDNA, which could release pDNA in reducing the environment due to the internal disulfide bonds cleavage. Poly(CBA-AG) also showed a spontaneous degradation behavior in aqueous condition in contrast to the backbone polymer, poly(cystaminebis(acrylamide)-diaminobutane) (poly(CBA-DAB)) lacking guanidine moieties, probably due to the self-catalyzed hydrolysis of internal amide bonds by guanidine moieties. The cytotoxicity of poly(CBA-AG) was cell-dependent but minimal. Poly(CBA-AG) exhibited highly enhanced transfection efficiency in comparison with poly(CBA-DAB) and even higher transfection efficiency than PEI25k. However, cellular uptake efficiency of the polyplexes did not show positive correlation with the transfection efficiency. Confocal microscopy observation revealed that pDNA delivered by poly(CBA-AG) was strongly accumulated in cell nuclei. These results suggested that high transfection efficiency of poly(CBA-AG) may be derived from the efficient pDNA localization in cell nuclei by guanidine moieties and that the polyplexes dissociation via self-catalyzed hydrolysis as well as disulfide bonds cleavage in cytosol also may facilitate the transfection process. Finally, poly(CBA-AG)/pJDK-apoptin polyplex showed a high anticancer activity induced by apoptosis, demonstrating a potential of poly(CBA-AG) as a gene carrier for cancer gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biomac.5b00590DOI Listing

Publication Analysis

Top Keywords

transfection efficiency
16
guanidine moieties
12
agmatine-containing bioreducible
8
bioreducible polymer
8
gene delivery
8
delivery systems
8
degradation behavior
8
disulfide bonds
8
bonds cleavage
8
self-catalyzed hydrolysis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!