The cyclin-dependent kinase 4 (CDK4)-cyclin D1 complex plays a crucial role in the transition from the G1 phase to S phase of the cell cycle. Among the CDKs, CDK4 is one of the genes most frequently affected by somatic genetic variations that are associated with various forms of cancer. Thus, because the abnormal function of the CDK4-cyclin D1 protein complex might play a vital role in causing cancer, CDK4 can be considered a genetically validated therapeutic target. In this study, we used a systematic, integrated computational approach to identify deleterious nsSNPs and predict their effects on protein-protein (CDK4-cyclin D1) and protein-ligand (CDK4-flavopiridol) interactions. This analysis resulted in the identification of possible inhibitors of mutant CDK4 proteins that bind the conformations induced by deleterious nsSNPs. Using computational prediction methods, we identified five nsSNPs as highly deleterious: R24C, Y180H, A205T, R210P, and R246C. From molecular docking and molecular dynamic studies, we observed that these deleterious nsSNPs affected CDK4-cyclin D1 and CDK4-flavopiridol interactions. Furthermore, in a virtual screening approach, the drug 5_7_DIHYDROXY_ 2_ (3_4_5_TRI HYDROXYPHENYL) _4H_CHROMEN_ 4_ONE displayed good binding affinity for proteins with the mutations R24C or R246C, the drug diosmin displayed good binding affinity for the protein with the mutation Y180H, and the drug rutin displayed good binding affinity for proteins with the mutations A205T and R210P. Overall, this computational investigation of the CDK4 gene highlights the link between genetic variation and biological phenomena in human cancer and aids in the discovery of molecularly targeted therapies for personalized treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4529227 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133969 | PLOS |
Mol Biol Res Commun
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
PLoS One
December 2024
Infection Biology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh.
CXCR4, a chemokine receptor known as Fusin or CD184, spans the outer membrane of various human cells, including leukocytes. This receptor is essential for HIV infection as well as for many vital cellular processes and is implicated to be associated with multiple pathologies, including cancers. This study employs various computational tools to investigate the molecular effects of disease-vulnerable germ-line missense and non-coding SNPs of the CXCR4 gene.
View Article and Find Full Text PDFCurr Res Struct Biol
November 2024
Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
Molecular switches serve as key regulators of biological systems by acting as one of the crucial driving forces in the initiation of signal transduction pathway cascades. The Ras homolog gene family member A (RhoA) is one of the molecular switches that binds with GTP in order to cycle between an active GTP-bound state and an inactive GDP-bound state. Any aberrance in control over this circuit, particularly due to any perturbation in switching, leads to the development of different pathogenicity.
View Article and Find Full Text PDFJ Appl Genet
December 2024
Department of Biotechnology, Gauhati University, Guwahati, Assam, 781014, India.
The MYC proto-oncogene encodes a basic helix-loop-helix leucine zipper (HLH-LZ) transcription factor, acting as a master regulator of genes involved in cellular proliferation, differentiation, and immune surveillance. Dysregulation of MYC is implicated in over 70% of human cancers, driving oncogenic processes through altered gene expression and disrupted cellular functions. Non-synonymous single nucleotide polymorphisms (nsSNPs) within coding regions can significantly impact protein structure and function, leading to abnormal cellular behaviours.
View Article and Find Full Text PDFRNA Biol
December 2025
Biochemistry and Biophysics Department, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
More than 4,000 single nucleotide polymorphisms (SNP) variants have been identified in the human gene, however only a few have been studied in the context of protein function. The tandem zinc finger domain of ZFP36L2, an RNA binding protein, is the functional domain that binds to its target mRNAs. This protein/RNA interaction triggers mRNA degradation, controlling gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!