Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Calcium dyshomeostasis is an important pathology of memory impairment. However, the mechanism of how calcium dyshomeostasis impairs neurons has remained elusive. The aim of the present study was to reveal the influence of calcium dyshomeostasis on the expression of calcium memory‑associated proteins and the ability of raloxifene to neutralize the adverse effects of glutamate on cultured neurons by regulation of calcium oscillations. After neurons were treated with various concentrations of glutamate alone or with raloxifene, the expression of calcium memory‑associated proteins and the influence on calcium dyshomeostasis was assessed. The results indicated that glutamate regulated calcium oscillation waves and expression of calcium memory‑associated protein in a concentration‑dependent manner. Raloxifene increased the expression of these proteins as well as neuronal survival. It is therefore concluded that glutamate regulated calcium oscillations in a dose‑dependent manner, while raloxifene protected neurons from destruction through glutamate exposure and at the same time neutralized the decrease in expression of the memory‑associated proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2015.4191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!