Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The prevalence of vitamin D deficiency in pregnancy is increasing and implicated in adverse consequences for the health of offspring in later life. The aim of this study was to determine whether vitamin D deficiency increases fetal exposure to glucocorticoids, which are known to alter fetal development and result in adverse adult health outcomes. Female BALB/c mice were placed on either a vitamin D control (2195 IU/kg) or deficient (0 IU/kg) diet for 5 weeks before and during pregnancy. Maternal serum, placentas and fetal brains were collected at embryonic day 14.5 or 17.5 for morphological and gene expression analysis. Vitamin D deficiency during pregnancy increased maternal corticosterone concentrations and reduced placental weight. Maternal vitamin D deficiency decreased placental expression of 11β-hydroxysteroid dehydrogenase type II, which inactivates glucocorticoids thereby protecting the fetus from inappropriate glucocorticoid exposure. There was a corresponding increase in placental and fetal expression of the highly glucocorticoid-sensitive factor glucocorticoid-induced leucine zipper. Furthermore, placental expression of the angiogenic factor vascular endothelial growth factor-A was reduced in vitamin D-deficient pregnancies, with a corresponding decline in fetal capillary volume within the placenta. Overall, we show that prenatal vitamin D deficiency leads to an increase in maternal corticosterone, alterations in genes indicative of increased fetal glucocorticoid exposure and impairment in placental vascular development. Thus, the long-term adverse health consequences of vitamin D deficiency during early development may not just be due to alteration in direct vitamin D-related pathways but also altered fetal glucocorticoid exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2015-1377 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!