Osteosarcoma (OS) is a malignant disease with a high mortality rate and poor response to current chemotherapy. Melanoma differentiation associated gene‑7 (Mda7)/interleukin (IL)‑24 has been demonstrated to suppress the growth of OS. However, the expression level of Mda7/IL‑24 mediated by the current adenoviral vector is limited for effective clinical treatment of OS. In order to solve this issue, an oncolytic adenovirus was employed to express IL‑24 (OA‑IL‑24) in OS cells. Quantitative polymerase chain reaction, immunoblot and ELISA assays verified that OA‑IL‑24 expressed IL‑24 at a higher level than the replication‑deficient adenoviral vector, Ad‑IL24. OA‑IL‑24 infection led to decreased cell viability and increased apoptosis of OS cells, compared with Ad‑IL‑24. Animal studies further confirmed the increased anti‑tumor activity of OA‑IL‑24. Notably, OA‑IL‑24 was also found to sensitize OS cells to doxorubicin. OA‑IL‑24‑induced multiple drug resistance reversion was associated with reduced expression of Pgp and BCRP1, as well as minimized autophagy. Furthermore, restoring Pgp and BCRP1 expression as well as autophagy, was able to rescue the effect of IL‑24 on the cytotoxicity of doxorubicin to OS. In conclusion, a method for inducing a high expression of IL‑24 in OS was provided. In addition, IL‑24 was demonstrated to increase the sensitivity of OS to doxorubicin.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2015.4180DOI Listing

Publication Analysis

Top Keywords

sensitivity doxorubicin
8
il‑24 demonstrated
8
adenoviral vector
8
pgp bcrp1
8
il‑24
6
expression
5
oa‑il‑24
5
oncolytic adenovirus‑mediated
4
adenovirus‑mediated mda‑7/il‑24
4
mda‑7/il‑24 expression
4

Similar Publications

High drug resistance remains a challenge for chemotherapy against hepatocellular carcinoma (HCC). Combining chemotherapeutic agents with microRNA (miRNA), which simultaneously regulates multiple pathways, offers a promising approach to improve therapeutic efficacy against HCC. Although cationic amphiphilic copolymers have been used to co-deliver these agents, their effectiveness is often limited by low co-encapsulation efficiency and inherent cationic toxicity.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) play a critical role in regulating various physiological processes. To gain a comprehensive understanding of their distinct functions in different physiological events, it is imperative to detect binary ROS simultaneously. However, the development of the sensing method capable of binary ROS detection remains a significant challenge.

View Article and Find Full Text PDF

Epigenetic modulation of doxorubicin resistance and strategies for enhancing chemotherapeutic sensitivity.

Int Rev Cell Mol Biol

January 2025

Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, India. Electronic address:

With the rising global cancer burden, the dependency on chemotherapy also rises along with the complication of chemoresistance development. Studies on multi-drug resistant proteins provide a wide range of regulators, although the exact mechanism is not yet clearly understood. Epigenetic modifications play a vital role in the regulation of cellular processes and also in determining the efficacy of cancer therapy by modulating resistance development and tumor progression.

View Article and Find Full Text PDF

Acquired resistance to chemotherapeutic drugs is the primary cause of treatment failure in the clinic. While multiple factors contribute to this resistance, increased expression of ABC transporters-such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance proteins-play significant roles in the development of resistance to various chemotherapeutics. We found that Erastin, a ferroptosis inducer, was significantly cytotoxic to NCI/ADR-RES, a P-gp-expressing human ovarian cancer cell line.

View Article and Find Full Text PDF

Enhancement of Doxorubicin Efficacy by Bacopaside II in Triple-Negative Breast Cancer Cells.

Biomolecules

January 2025

Solid Tumour Group, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville South, Adelaide, SA 5011, Australia.

Background: Triple-negative breast cancer (TNBC) is an aggressive subtype with limited treatment options and high resistance to chemotherapy. Doxorubicin is commonly used, but its efficacy is limited by variable sensitivity and resistance. Bacopaside II, a saponin compound, has shown anti-cancer potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!