To gain insight into the evolution of influenza A viruses (IAVs) during infection of vaccinated pigs, we experimentally infected a 3-week-old naive pig with a triple-reassortant H1N1 IAV and placed the seeder pig in direct contact with a group of age-matched vaccinated pigs (n = 10). We indexed the genetic diversity and evolution of the virus at an intra-host level by deep sequencing the entire genome directly from nasal swabs collected at two separate samplings during infection. We obtained 13 IAV metagenomes from 13 samples, which included the virus inoculum and two samples from each of the six pigs that tested positive for IAV during the study. The infection produced a population of heterogeneous alleles (sequence variants) that was dynamic over time. Overall, 794 polymorphisms were identified amongst all samples, which yielded 327 alleles, 214 of which were unique sequences. A total of 43 distinct haemagglutinin proteins were translated, two of which were observed in multiple pigs, whereas the neuraminidase (NA) was conserved and only one dominant NA was found throughout the study. The genetic diversity of IAVs changed dynamically within and between pigs. However, most of the substitutions observed in the internal gene segments were synonymous. Our results demonstrated remarkable IAV diversity, and the complex, rapid and dynamic evolution of IAV during infection of vaccinated pigs that can only be appreciated with repeated sampling of individual animals and deep sequence analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857448PMC
http://dx.doi.org/10.1099/jgv.0.000258DOI Listing

Publication Analysis

Top Keywords

vaccinated pigs
16
infection vaccinated
12
triple-reassortant h1n1
8
genetic diversity
8
pigs
7
infection
5
iav
5
genome plasticity
4
plasticity triple-reassortant
4
h1n1 influenza
4

Similar Publications

Modification of African classical swine fever p30 protein with magnetic nanoparticles and establishment of a novel rapid detection method.

Int J Biol Macromol

December 2024

International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:

African swine fever has caused huge losses to the global pig industry. In the absence of effective vaccines, reliable detection methods are crucial. The p30 protein of ASFV is often used as a target for detection due to its high antigenicity in the early stage of virus replication.

View Article and Find Full Text PDF

Respiratory diseases, such as pleurisy and pneumonia, cause significant health and economic losses in pig production. This study evaluated 867 finishing pigs from a farm with a history of respiratory issues, using macroscopic lesion scoring (SPES and CVPC), histopathological analysis, qPCR diagnostics, and economic modeling. Severe pleurisy (scores 3 and 4) was observed in 42.

View Article and Find Full Text PDF

A Universal Multi-Epitope Vaccine Design Against Porcine Reproductive and Respiratory Syndrome Virus via Bioinformatics and Immunoinformatics Approaches.

Vet Sci

December 2024

Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in sows and severe pneumonia in piglets, alongside immunosuppressive effects on the host. It poses a significant global threat to the swine industry, with no effective control measures currently available due to its complex pathogenesis and high variability. Conventional inactivated and attenuated vaccines provide inadequate protection and carry biosafety risks.

View Article and Find Full Text PDF

Stress Biomarkers in Pigs: Current Insights and Clinical Application.

Vet Sci

December 2024

Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Trikalon 224, 43100 Karditsa, Greece.

Our study aimed to contribute to the understanding of the stress process in pigs to better assess and control their stress levels. Nowadays, pigs in intensive farming are exposed to several stress factors, such as weaning, transportation, diseases and vaccinations. As a result, the animals experience significant stress responses and inflammatory reactions that affect their health, growth and productivity.

View Article and Find Full Text PDF

Optimizing encephalomyocarditis virus VP1 protein assembly on pseudorabies virus envelope via US9 protein anchoring.

Virulence

December 2025

The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.

Live herpesvirus-vectored vaccines are critical in veterinary medicine, but they can sometimes offer insufficient protection due to suboptimal antigen expression or localization. Encephalomyocarditis virus (EMCV) is a significant zoonotic threat, with VP1 protein as a key immunogen on its capsid. To enhance immunogenicity, we explored the use of recombinant pseudorabies virus (rPRV) as a vaccine vector against EMCV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!