β-amyloid, microglia, and the inflammasome in Alzheimer's disease.

Semin Immunopathol

Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.

Published: November 2015

There is extensive evidence that accumulation of mononuclear phagocytes including microglial cells, monocytes, and macrophages at sites of β-amyloid (Aβ) deposition in the brain is an important pathological feature of Alzheimer's disease (AD) and related animal models, and the concentration of these cells clustered around Aβ deposits is several folds higher than in neighboring areas of the brain [1-5]. Microglial cells phagocytose and clear debris, pathogens, and toxins, but they can also be activated to produce inflammatory cytokines, chemokines, and neurotoxins [6]. Over the past decade, the roles of microglial cells in AD have begun to be clarified, and we proposed that these cells play a dichotomous role in the pathogenesis of AD [4, 6-11]. Microglial cells are able to clear soluble and fibrillar Aβ, but continued interactions of these cells with Aβ can lead to an inflammatory response resulting in neurotoxicity. Inflammasomes are inducible high molecular weight protein complexes that are involved in many inflammatory pathological processes. Recently, Aβ was found to activate the NLRP3 inflammasome in microglial cells in vitro and in vivo thereby defining a novel pathway that could lead to progression of AD [12-14]. In this manuscript, we review possible steps leading to Aβ-induced inflammasome activation and discuss how this could contribute to the pathogenesis of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618770PMC
http://dx.doi.org/10.1007/s00281-015-0518-0DOI Listing

Publication Analysis

Top Keywords

microglial cells
20
alzheimer's disease
8
cells
8
microglial
5
5
β-amyloid microglia
4
microglia inflammasome
4
inflammasome alzheimer's
4
disease extensive
4
extensive evidence
4

Similar Publications

Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research.

Int J Surg

January 2025

Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.

Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.

View Article and Find Full Text PDF

Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.

View Article and Find Full Text PDF

This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau.

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!