A Framework for Inferring Unobserved Multistrain Epidemic Subpopulations Using Synchronization Dynamics.

Bull Math Biol

Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ, 07043, USA,

Published: July 2015

A new method is proposed to infer unobserved epidemic subpopulations by exploiting the synchronization properties of multistrain epidemic models. A model for dengue fever is driven by simulated data from secondary infective populations. Primary infective populations in the driven system synchronize to the correct values from the driver system. Most hospital cases of dengue are secondary infections, so this method provides a way to deduce unobserved primary infection levels. We derive center manifold equations that relate the driven system to the driver system and thus motivate the use of synchronization to predict unobserved primary infectives. Synchronization stability between primary and secondary infections is demonstrated through numerical measurements of conditional Lyapunov exponents and through time series simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4550571PMC
http://dx.doi.org/10.1007/s11538-015-0091-7DOI Listing

Publication Analysis

Top Keywords

multistrain epidemic
8
epidemic subpopulations
8
infective populations
8
driven system
8
driver system
8
secondary infections
8
unobserved primary
8
framework inferring
4
unobserved
4
inferring unobserved
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!