According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. These changes are expected to have severe direct impacts on the management of water resources, agricultural productivity and drinking water supply. Current projections of future hydrological change, based on regional climate model results and subsequent hydrological modeling schemes, are very uncertain and poorly validated. The Rio Mannu di San Sperate Basin, located in Sardinia, Italy, is one test site of the CLIMB project. The Water Simulation Model (WaSiM) was set up to model current and future hydrological conditions. The availability of measured meteorological and hydrological data is poor as it is common for many Mediterranean catchments. In this study we conducted a soil sampling campaign in the Rio Mannu catchment. We tested different deterministic and hybrid geostatistical interpolation methods on soil textures and tested the performance of the applied models. We calculated a new soil texture map based on the best prediction method. The soil model in WaSiM was set up with the improved new soil information. The simulation results were compared to standard soil parametrization. WaSiMs was validated with spatial evapotranspiration rates using the triangle method (Jiang and Islam, 1999). WaSiM was driven with the meteorological forcing taken from 4 different ENSEMBLES climate projections for a reference (1971-2000) and a future (2041-2070) times series. The climate change impact was assessed based on differences between reference and future time series. The simulated results show a reduction of all hydrological quantities in the future in the spring season. Furthermore simulation results reveal an earlier onset of dry conditions in the catchment. We show that a solid soil model setup based on short-term field measurements can improve long-term modeling results, which is especially important in ungauged catchments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.07.116 | DOI Listing |
Healthc Manage Forum
January 2025
University of Toronto, Toronto, Ontario, Canada.
Healthcare is a surprisingly large contributor to climate change, responsible for a significant quantity of global Greenhouse Gas (GHG) emissions. Global commitments to achieve "net zero" health systems, including by the federal government in Canada, suggest a growing need to understand and mobilize capacity for GHG emissions estimation across Canada's health sector. Our analysis highlights efforts by public sector healthcare organizations in Canada to estimate an increasingly broad scope of GHG emissions, building on longstanding efforts to report or reduce energy-related emissions from facilities.
View Article and Find Full Text PDFBMC Med
January 2025
Department of Health Economics, School of Public Health, Fudan University, Shanghai, China.
Background: Adolescent diabetes is one of the major public health problems worldwide. This study aims to estimate the burden of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) in adolescents from 1990 to 2021, and to predict diabetes prevalence through 2030.
Methods: We extracted epidemiologic data from the Global Burden of Disease (GBD) on T1DM and T2DM among adolescents aged 10-24 years in 204 countries and territories worldwide.
BMC Public Health
January 2025
Key Laboratory of Cities Mitigation and Adaptation to Climate Change in Shanghai (CMACC), Shanghai, 200092, China.
Background: Due to climate change and rapid urbanization, the frequency of heatwave events in East China has increased considerably since the 21st century, which has a considerable influence on human health, such as heatstroke. However, few studies have been conducted in this region on the relationship between heatstroke and meteorological conditions. To address this point, this study aimed to analyze the characteristics of heatstroke and their relationship with meteorological conditions in Hefei, China.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
Worldwide, many coastal freshwater ecosystems suffer from seawater intrusion. In addition to this stressor, it is likely that the biota inhabiting these ecosystems will also need to deal with climate change-related temperature fluctuations. The resilience of populations to long-term exposure to these stressors will depend on their genetic diversity, a key for their adaptation to changing environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!