Cross-linking of specific lipid components by proteins mediates transmembrane signaling and material transport. In this work, we conducted coarse-grained simulation to investigate the interactions of binding units of chorela toxin (CTB) with mixed ganglioside GM1 and dipalmitoylphosphatidylcholine (DPPC) lipid bilayer membrane. We determine that the binding of CTB pentamers cross-links GM1 molecules into protein-sized nanodomains that have distinct lipid order compared with the bulk. The toxin in the nanodomain partially penetrates into the membrane. The local disordering can also transmit across the membrane via lipid coupling. Comparison simulations on CTB binding to a membrane that is composed of various lipid components demonstrate that several factors are responsible for the nanodomain formation: (a) the negatively charged headgroup of a GM1 receptor is responsible for the multivalent binding; (b) the head groups being full of hydrogen-bonding donors and receptors stabilize the GM1 cluster itself and ensure the toxin binding with high affinity; and
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.5b01866 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Institute of General, Inorganic and Theoretical Chemistry Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
Novel anode materials for lithium-ion batteries (LIBs) are constantly being explored to further improve battery performance. In this work, ReaxFF molecular dynamics (MD) simulations are performed to model the early stages in the synthesis of nanostructured silicon carbide (SiC), which is one such promising material. The focus lies on its precursor, silicon oxycarbide glass of composition (SiOC) (17 mol% Si, 28 mol% O, and 54 mol% C), in the following referred to as SiOC.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Interdisciplinary Institute for Neuroscience, Université Bordeaux, CNRS, Bordeaux, France.
Single molecule tracking and super-resolution microscopy of integrin adhesion proteins and actin in developing Drosophila muscle attachment sites reveals that nanotopography triggered by Arp2/3-dependent actin protrusions promotes stable adhesion formation. The nanodomains formed during this process confine the diffusion of integrins and promote their immobilization. Spatial confinement is also applied to the motion of actin filaments, resulting in enhanced mechanical connection with the integrin adhesion complex.
View Article and Find Full Text PDFNew Phytol
December 2024
IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, 34000, France.
Plasma membrane (PM) nanodomains have emerged as pivotal elements in the regulation of plant cellular functions and signal transduction. These nanoscale membrane regions, enriched in specific lipids and proteins, behave as regulatory/signaling hubs spatially and temporally coordinating critical cellular functions. In this review, we first examine the mechanisms underlying the formation and maintenance of PM nanodomains in plant cells, highlighting the roles of PM lipid composition, protein oligomerization and interactions with cytoskeletal and cell wall components.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Group of Characterization of Materials, Departament de Física, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona 08019, Spain.
Hybrid organic-inorganic perovskites (HOIP) have emerged in recent years as highly promising semiconducting materials for a wide range of optoelectronic and energy applications. Nevertheless, the rotational dynamics of the organic components and many-molecule interdependencies, which may strongly impact the functional properties of HOIP, are not yet fully understood. In this study, we quantitatively analyze the orientational disorder and molecular correlations in archetypal perovskite CHNHPbI (MAPI) by performing comprehensive molecular dynamics simulations and entropy calculations.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Development of an understanding of membrane nanodomains colloquially known as "lipid rafts" has been hindered by a lack of pharmacological tools to manipulate rafts and protein affinity for rafts. We screened 24,000 small molecules for modulators of the affinity of peripheral myelin protein 22 (PMP22) for rafts in giant plasma membrane vesicles (GPMVs). Hits were counter-screened against another raft protein, MAL, and tested for impact on raft , leading to two classes of compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!