The Pacific oyster Crassostrea gigas, a widely cultivated marine bivalve mollusc, is becoming a genetically and genomically enabled model for highly fecund marine metazoans with complex life-histories. A genome sequence is available for the Pacific oyster, as are first-generation, low-density, linkage and gene-centromere maps mostly constructed from microsatellite DNA makers. Here, higher density, second-generation, linkage maps are constructed from more than 1100 coding (exonic) single-nucleotide polymorphisms (SNPs), as well as 66 previously mapped microsatellite DNA markers, all typed in five families of Pacific oysters (nearly 172,000 genotypes). The map comprises 10 linkage groups, as expected, has an average total length of 588 cM, an average marker-spacing of 1.0 cM, and covers 86% of a genome estimated to be 616 cM. All but seven of the mapped SNPs map to 618 genome scaffolds; 260 scaffolds contain two or more mapped SNPs, but for 100 of these scaffolds (38.5%), the contained SNPs map to different linkage groups, suggesting widespread errors in scaffold assemblies. The 100 misassembled scaffolds are significantly longer than those that map to a single linkage group. On the genetic maps, marker orders and intermarker distances vary across families and mapping methods, owing to an abundance of markers segregating from only one parent, to widespread distortions of segregation ratios caused by early mortality, as previously observed for oysters, and to genotyping errors. Maps made from framework markers provide stronger support for marker orders and reasonable map lengths and are used to produce a consensus high-density linkage map containing 656 markers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592983PMC
http://dx.doi.org/10.1534/g3.115.019570DOI Listing

Publication Analysis

Top Keywords

pacific oyster
12
second-generation linkage
8
linkage maps
8
oyster crassostrea
8
crassostrea gigas
8
genome scaffolds
8
maps constructed
8
microsatellite dna
8
linkage groups
8
mapped snps
8

Similar Publications

Structure-based method for the discovery of selective inhibitors of PED 5 in erectile dysfunction therapy from the Pacific oyster peptides (Crassostrea gigas): Peptidomic analysis, molecular docking, and activity validation.

Int J Biol Macromol

January 2025

Center for Mitochondria and Healthy Aging, School of Life Sciences, Yantai University, Yantai 264005, China; College of Life Sciences, Yantai University, Yantai 264005, Shandong, China. Electronic address:

Erectile dysfunction (ED) is a male sexual disorder mainly caused by a reduction in the cellular concentration of cyclic guanosine monophosphate (cGMP), which is degraded by phosphodiesterase type-5 (PDE-5). Oyster protein (OP) and its hydrolysates have been used for centuries to address male erectile dysfunction, however the mechanisms and evidence supporting their efficacy remain unclear. In this study, OP was hydrolyzed using trypsin to produce peptides that inhibit PDE-5.

View Article and Find Full Text PDF

The rock oyster, Saccostrea cucullata, native to the Indo-Pacific region, is renowned for its nutritional and therapeutic benefits. A sulfated glycosaminoglycan (SCP-2) with β-(1→3)-GlcNSp and α-(1→4)-GlcAp as recurring units isolated from S. cucullata.

View Article and Find Full Text PDF

White spot syndrome virus (WSSV) poses a major risk to shrimp aquaculture, and filter-feeding bivalves on shrimp farms may contribute to its persistence and transmission. This study investigated the bioaccumulation and vector potential of WSSV in Pacific oysters (), blue mussels (), and manila clams () cohabiting with WSSV-infected shrimp. Sixty individuals of each species (average shell lengths: 11.

View Article and Find Full Text PDF

There has been an increase in foodborne vibriosis outbreaks globally, with Vibrio parahaemolyticus emerging as a foodborne issue in temperate commercial shellfish growing regions, including southern Australia. The food safety concerns associated with these microorganisms have led to the need for specific guidance on potential risk management strategies for their control. This is the first Australian multi-seasonal survey of V.

View Article and Find Full Text PDF

The Pacific oyster Crassostrea gigas is rich in taurine, a conditionally essential amino acid functioning in anti-oxidation, anti-inflammation, anti-aging, osmoregulation, and neuromodulation. Breeding oyster varieties with enhanced taurine content is significant to meet people's demand for high-quality oysters. In the present study, polymorphisms in the oyster cysteamine dioxygenase (CgADO) gene that encodes the central enzyme of the cysteamine pathway for taurine synthesis were investigated, and their association with taurine content was assessed in the Changhai (CH) and Qinhuangdao (QHD) populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!