The future of nanosized radiation enhancers.

Br J Radiol

Nanobiotix, Paris, France.

Published: October 2015

Radiotherapy has a universal and predictable mode of action, that is, a physical mode of action consisting of the deposit of a dose of energy in tissues. Tumour cell damage is proportional to the energy dose. However, the main limitation of radiotherapy is the lack of spatial control of the deposition of energy, that is, it penetrates the healthy tissues, damages them and renders unfeasible delivery of an efficient energy dose when tumours are close to important anatomical structures. True nanosized radiation enhancers may represent a disruptive approach to broaden the therapeutic window of radiation therapy. They offer the possibility of entering tumour cells and depositing high amounts of energy in the tumour only when exposed to ionizing radiations (on/off activity). They may unlock the potential of radiation therapy by rendering the introduction of a greater energy dose, exactly within the tumour structure without passing through surrounding tissues feasible. Several nanosized radiation enhancers have been studied in in vitro and in vivo models with positive results. One agent has received the authorization to conduct clinical trials for human use. Opportunities to improve outcomes for patients receiving radiotherapy, to create new standards of care and to offer solutions to new patient populations are looked over here.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730967PMC
http://dx.doi.org/10.1259/bjr.20150171DOI Listing

Publication Analysis

Top Keywords

nanosized radiation
12
radiation enhancers
12
energy dose
12
mode action
8
radiation therapy
8
energy
6
radiation
5
future nanosized
4
enhancers radiotherapy
4
radiotherapy universal
4

Similar Publications

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Oral cavity cancer poses a significant health threat due to its aggressive nature and limited responsiveness to traditional therapies like chemotherapy and radiation, highlighting the need for more effective treatment options. To address this, researchers have explored a novel approach using niosome nanoparticles to co-encapsulate curcumin (CUR) and cisplatin (Cis), to enhance therapeutic efficacy. While CUR has anti-cancer properties, its poor bioavailability limits its effectiveness.

View Article and Find Full Text PDF

We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.

View Article and Find Full Text PDF

Defect engineering can create various vacancy configurations in catalysts by finely tuning the local electronic and geometric structures of the active sites. However, achieving precise control and identification of these defects remains a significant challenge, and the origin of vacancy configurations in catalysts, especially clustered or associated ones, remains largely unknown. Herein, we successfully achieve the controllable fabrication and quantitative identification of triple O-Ti-O vacancy associate (VVV) in nanosized Ni-doped TiO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!