Unlabelled: Hepatic stellate cells (HSCs) constitute the liver sinusoid with Kupffer cells and liver sinusoidal endothelial cells. While the sinusoid functions as the gateway to liver inflammation, whether HSCs contribute to liver inflammation and, if so, how they exert such functions remain elusive. Here, we found that mouse as well as human HSCs expressed DP1 receptor for prostaglandin D2 selectively in the liver. Pharmacological stimulation of DP1 by BW245C, a DP1-selective agonist, suppressed the activation of cultured HSCs by tumor necrosis factor-α at least in part through down-regulation of nuclear factor kappa-light-chain-enhancer of activated B cells signaling and inhibition of c-Jun N-terminal kinase phosphorylation. DP1 deficiency or BW245C administration in mice significantly enhanced or suppressed concanavalin A (ConA)-induced hepatitis, respectively. ConA injection induced tumor necrosis factor-α and interferon-γ expression in the sinusoid, which was suppressed by administration of BW245C. Coculture of spleen cells and liver nonparenchymal cells showed that ConA first activated spleen cells and that this activation led to activation of nonparenchymal cells to secondarily produce tumor necrosis factor-α and interferon-γ. Microarray analysis revealed ConA-induced expression of endothelin-1, tissue factor, and chemokines in the liver and inducible nitric oxide synthase in hepatocytes, resulting in flow stagnation, leukocyte adherence and migration to the parenchyma, and hepatocyte death. DP1 stimulation inhibits all these events in the liver. Therefore, HSCs mediate amplification of ConA-induced liver inflammation in the sinusoid, causing direct and indirect hepatocyte injury, and DP1 stimulation inhibits this HSC activation.
Conclusions: HSCs integrate cytokine-mediated inflammatory responses in the sinusoids and relay them to the liver parenchyma, and these HSC actions are inhibited by DP1 stimulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/hep.28112 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany.
Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).
View Article and Find Full Text PDFViruses
January 2025
College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.
View Article and Find Full Text PDFViruses
January 2025
Instituto Nacional de Saúde of Mozambique, EN1, Bairro da Vila, Marracuene 3943, Mozambique.
Hepatitis B virus (HBV) is a major public health concern responsible for hepatitis and hepatocellular carcinoma (HCC) worldwide. In Mozambique, HBsAg prevalence is high and endemic, and despite the strategies to mitigate the spread of the disease, the HCC incidence is still high and one of the highest in the world. There is still limited data on the serological profile and molecular epidemiology of HBV in Mozambique given the burden of this disease.
View Article and Find Full Text PDFViruses
January 2025
Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
The Rift Valley fever virus (RVFV) causes haemorrhagic fever, encephalitis, and permanent blindness and has been listed by the WHO as a priority pathogen. To study RVFV pathogenesis and identify small-molecule antivirals, we established a novel In Vivo model using zebrafish larvae. Pericardial injection of RVFV resulted in ~4 log viral RNA copies/larva, which was inhibited by the antiviral 2'-fluoro-2'-deoxycytidine.
View Article and Find Full Text PDFViruses
January 2025
Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!