To prevent indoor fungal growth, understanding the moisture relations of fungi is a key element. Indoor moisture is quantified by the relative humidity (RH). RH controls the water activity of the indoor materials that fungi grow on, a well-studied parameter known to limit fungal growth. RH, however, also controls the amount of water present in these materials, the moisture content. The significance of the moisture content of these materials to indoor fungal growth is currently overlooked. In the work reported here, growth experiments with the indoor fungus Penicillium rubens on gypsum substrates were performed to test whether the moisture content influences growth on porous materials. Second, we report the development of a video microscopy method that for the first time quantified hyphal growth on a porous material. It is found that a higher moisture content leads to earlier colonization and higher hyphal extension rates. This is a fundamental step in unravelling the effect of RH on indoor fungal growth. The real-time monitoring of colonization of gypsum provides a new view of growth on indoor surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13012DOI Listing

Publication Analysis

Top Keywords

moisture content
20
fungal growth
16
indoor fungal
12
water activity
8
hyphal extension
8
penicillium rubens
8
growth
8
growth porous
8
moisture
7
indoor
7

Similar Publications

Wi-Fi signal for soil moisture sensing.

Environ Monit Assess

December 2024

Division of Soil Science, Institute of Geoecology, TU Braunschweig, Brunswick, Germany.

Measuring soil moisture is essential in various scientific and engineering disciplines. Over recent decades, numerous technologies have been employed for in situ monitoring of soil moisture. Currently, dielectric-based sensors are the most popular measurement technology and provide acceptable accuracy for various measurement purposes.

View Article and Find Full Text PDF

Research on muck conditioning for EPB shield tunnelling in composite formation.

Sci Rep

December 2024

School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, Jiangxi, People's Republic of China.

Compared with simple formations, EPB (earth pressure balance) shield tunnelling in composite formations encounters severe problems with muck conditioning and require improved muck conditioning technology to fulfil expectations for continuous and efficient excavation. In the Nanchang Metro Line 4 Project, a water-rich sand-argillaceous siltstone composite formation is encountered. With a high moisture content and complex composite formation ratio, it is quite difficult to determine the optimum muck conditioning scheme, and thus, muck spewing accidents frequently occur during the tunnelling process.

View Article and Find Full Text PDF

Characterization of a biocomposite film using coconut jelly powder to improve arrowroot starch and sodium alginate film forming properties.

Int J Biol Macromol

December 2024

Department of Marine, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya 60115, Indonesia; Research Group of Post-harvest, Processing Technology, and Bioproducts, Faculty of Fisheries and Marine, Universitas Airlangga, Mulyorejo, Surabaya 60115, Indonesia. Electronic address:

Composite polymers are promising solution to structural setbacks of starch and alginate-based films due to their hydrophilic attributes. Hence, this study aimed to investigate young coconut jelly powder (CJP), an under-utilized by-waste, as a filler using the casting method to develop a novel biocomposite from increments of CJP (1-3 %) to a blended resin of arrowroot starch, sodium alginate, and glycerol. Moreover, the films were characterized by physicomechanical (visual aspect, thickness, color, moisture content, tensile strength, and elongation at break); surface microstructure; water barrier (water vapor permeability, water solubility, and water activities); thermal, crystallinity, and functional group properties; soil, river water, and seawater biodegradability; and coating application in cherry tomato.

View Article and Find Full Text PDF

, a salt-tolerant plant, has demonstrated antioxidant effects, the ability to prevent prostate enlargement, antifungal properties, and skin moisturizing benefits. This study aimed to explore the anti-melanogenic potential of the 70% ethanol extract of (TME) along with its ethyl acetate (TME-EA) and water (TME-A) fractions. TME (10-200 µg/mL), TME-EA (1-15 µg/mL), and TME-A (100-1000 µg/mL) were prepared and applied to B16F10 cells with or without α-MSH for 72 h.

View Article and Find Full Text PDF

The therapeutic potential of L. extract has gained significant attention due to its diverse medical applications. Sublingual administration remains a common delivery method of cannabinoids; however, challenges often arise due to the inconvenient form of the extract and its taste.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!