A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced remediation of chlorpyrifos by ryegrass (Lolium multiflorum) and a chlorpyrifos degrading bacterial endophyte Mezorhizobium sp. HN3. | LitMetric

For effective remediation of contaminants, plant-endophyte partnership is a promising field to be explored. Generally endophytic bacteria assist their host plant by withstanding the stress induced by the contaminants. The objective of this study was to explore the suitability of plant-bacterial partnership for chlorpyrifos (CP) remediation using ryegrass and a CP degrading endophyte, Mesorhizobium sp. HN3 which belongs to plant growth promoting rhizobia. The inoculated yfp-tagged Mesorhizobium sp. HN3 efficiently colonized in the rhizosphere, enhanced plant growth and degradation of CP and its metabolite 3,5,6 trichloro-2-pyridinol (TCP). Significantly lower CP residues were observed in the roots and shoots of plants vegetated in inoculated soil which might be attributed to the efficient root colonization of HN3yfp. These results suggest the involvement of Mesorhizobium sp. HN3yfp in CP degradation inside the roots and rhizosphere of plants and further emphasize on the effectiveness of endophytic bacteria in stimulating the remediation of pesticide contaminants. This is the first report which demonstrates the efficacy of bacterial endophyte for degradation of CP residues taken up by the plant and enhanced remediation of chlorpyrifos contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2015.1073666DOI Listing

Publication Analysis

Top Keywords

enhanced remediation
8
remediation chlorpyrifos
8
bacterial endophyte
8
endophytic bacteria
8
mesorhizobium hn3
8
plant growth
8
chlorpyrifos
4
chlorpyrifos ryegrass
4
ryegrass lolium
4
lolium multiflorum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!