When measurement results with values near the decision threshold are being considered, a relative uncertainty of 60% is expected. Since such measurement results can be reported, the performance of the peak-analysing software for gamma-ray spectra needs to be examined for peaks that have a large relative uncertainty. The investigation was performed on a series of spectra measured with a HPGe detector under identical counting conditions. It was found that under a limit value of the relative peak area uncertainty the peak-analysis results are reliable with respect to both the peak location and the peak area evaluation. At relative uncertainties exceeding this uncertainty, the probability of type-II errors increases and a systematic influence on the peak area occurs, which originates in fluctuations of the continuous background in the vicinity of the peak. For the counting conditions used in this investigation, the limit relative uncertainty is about 35%, and whereas a systematic influence can be taken into account by a correction factor, the frequency of the type-II errors can only be reduced at the expense of increasing the frequency of the type-I errors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2015.07.024DOI Listing

Publication Analysis

Top Keywords

relative uncertainty
12
peak area
12
counting conditions
8
limit relative
8
type-ii errors
8
systematic influence
8
relative
6
uncertainty
5
peak
5
reliability peak-analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!