CD44 has been studied in a wide variety of cell types, in a diverse array of cell behaviors and in a diverse range of signaling pathways. We now document a role for CD44 in mediating fibroblast behaviors via regulation of N-cadherin, extracellular matrix expression, Survivin and the Hippo pathway. Here, we report our findings on the roles of CD44 in modulating proliferation, apoptosis, migration and invasion of murine wild-type (WT-FB) and CD44 knockout dermal fibroblasts (CD44KO-FB). As we have documented in microvascular endothelial cells lacking CD44, we found persistent increased proliferation, reduced activation of cleaved caspase 3, increased initial attachment, but decreased strength of cell attachment in high cell density, post confluent CD44KO-FB cultures. Additionally, we found that siRNA knock-down of CD44 mimicked the behaviors of CD44KO-FB, restoring the decreases in N-cadherin, collagen type I, fibronectin, Survivin, nuclear fractions of YAP and phospho-YAP and decreased levels of cleaved caspase 3 to the levels observed in CD44KO-FB. Interestingly, plating CD44KO-FB on collagen type I or fibronectin resulted in significant decreases in secondary proliferation rates compared to plating cells on non-coated dishes, consistent with increased cell adhesion compared to their effects on WT-FB. Lastly, siRNA knockdown of CD44 in WT-FB resulted in increased fibroblast migration compared to WT-FB, albeit at reduced rates compared to CD44KO-FB. These results are consistent with CD44's pivotal role in modulating several diverse behaviors important for adhesion, proliferation, apoptosis, migration and invasion during development, growth, repair, maintenance and regression of a wide variety of mesenchymal tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.25123 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, People's Republic of China.
Background: Emerging evidence shows that small nucleolar RNA (snoRNA), a type of highly conserved non-coding RNA, is involved in tumorigenesis and aggressiveness. However, the roles of snoRNAs in regulating alternative splicing crucial for cancer progression remain elusive.
Methods: High-throughput RNA sequencing and comprehensive analysis were performed to identify crucial snoRNAs and downstream alternative splicing events.
Cell Commun Signal
January 2025
Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated.
View Article and Find Full Text PDFLife Sci Alliance
March 2025
https://ror.org/00hj54h04 Interdisciplinary Life Sciences Graduate Programs, The University of Texas at Austin, Austin, TX, USA
Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China. Electronic address:
Surfaces capable of specific biomolecule recognition are essential for cancer theranostics, biosensing, and tissue engineering. However, current grafting methods, critical for dictating the recognition efficiency and biocompatibility of biomaterials, especially hydrophilic polymers, struggle to balance high grafting density with ease of implementation. In pursuit of a simple, effective, and versatile solution, we introduced a polydopamine (PDA)-assisted Ca-mediated grafting strategy using hyaluronic acid (HA) as a model material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!