Background: Ultrasound induces mechanical vibration and heat, causing differentiation and proliferation in osteoblasts. All known in vitro evaluations of ultrasound are, however, performed with longitudinal ultrasound waves. We addressed a question: Do other forms of ultrasound waves, such as guided waves (longitudinal and guided flexural) transduced at a remote location, enhance differentiation of osteoblast cells?
Methods: In this study, we employed guided Lamb waves that were induced in a borosilicate glass slide (cortical bone mimic). An average energy of 10-30 mW/cm(2) for 20 min per day was applied to MC3T3 osteoblast-like cells, which were placed 30-75 mm distant from the transducer.
Results: The result revealed that guided waves significantly stimulated the differentiation and mineralization of MC3T3 cells. In particular, guided waves elevated mRNA expression levels of bone formation-related genes such as alkaline phosphatase, osteopontin, osteocalcin, osteoprotegerin, and bone sialoprotein on days 8 and 16. In addition, the amount of mineralization found via Alizarin red staining was increased by 157 % (p = 0.034). The amount of mineralization was found to be independent of distance from the transducer (p = 0.967).
Conclusion: We demonstrate herein that ultrasound in a form of guided Lamb waves is capable of inducing osteoblast differentiation in vitro, and it may enable the stimulation of osteoblasts in vivo over a distance from the site of ultrasound application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526286 | PMC |
http://dx.doi.org/10.1186/s40349-015-0034-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!