This study aimed to evaluate the orofacial antinociceptive effect of the Cymbopogon winterianus essential oil (LEO) complexed in β-cyclodextrin (LEO-CD) and to assess the possible involvement of the central nervous system (CNS). The LEO was extracted, chromatographed, and complexed in β-cyclodextrin. The complex was characterized by differential scanning calorimetry (DSC) and thermogravimetry derivative (TG/DTG). Male Swiss mice (2-3 months) were treated with LEO-CD (50-200 mg/kg, p.o.), vehicle (distilled water, p.o.), or standard drug (i.p.) and subjected to the orofacial nociception formalin-, capsaicin-, and glutamate-induced. After the formalin test, the animals were perfused and the brains subjected to immunofluorescence for Fos. The rota-rod test (7 rpm/min) was carried out. Geraniol (37.57%) was the main compound of LEO. DSC and TG/DTG proved the complexation. The orofacial nociceptive behavior was significantly (p < 0.05) reduced. The number of Fos-positive cells was significantly changed in the dorsal raphe nucleus (p < 0.01), locus coeruleus (p < 0.001), trigeminal nucleus (p < 0.05), and trigeminal thalamic tract (p < 0.05). LEO-CD did not cause changes in motor coordination in the rota-rod test. Thus, our results suggested that LEO-CD has an orofacial antinociceptive profile, probably mediated by the activation of the CNS without changing the motor coordination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515525PMC
http://dx.doi.org/10.1155/2015/502454DOI Listing

Publication Analysis

Top Keywords

cymbopogon winterianus
8
essential oil
8
orofacial antinociceptive
8
complexed β-cyclodextrin
8
rota-rod test
8
motor coordination
8
preparation characterization
4
characterization pharmacological
4
pharmacological activity
4
activity cymbopogon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!