Unlabelled: Bluetongue virus (BTV) is an arbovirus transmitted to livestock by midges of the Culicoides family and is the etiological agent of a hemorrhagic disease in sheep and other ruminants. In mammalian cells, BTV particles are released primarily by virus-induced cell lysis, while in insect cells they bud from the plasma membrane and establish a persistent infection. BTV possesses a ten-segmented double-stranded RNA genome, and NS3 proteins are encoded by segment 10 (Seg-10). The viral nonstructural protein 3 (NS3) plays a key role in mediating BTV egress as well as in impeding the in vitro synthesis of type I interferon in mammalian cells. In this study, we asked whether genetically distant NS3 proteins can alter BTV-host interactions. Using a reverse genetics approach, we showed that, depending on the NS3 considered, BTV replication kinetics varied in mammals but not in insects. In particular, one of the NS3 proteins analyzed harbored a proline at position 24 that leads to its rapid intracellular decay in ovine but not in Culicoides cells and to the attenuation of BTV virulence in a mouse model of disease. Overall, our data reveal that the genetic variability of Seg-10/NS3 differentially modulates BTV replication kinetics in a host-specific manner and highlight the role of the host-specific variation in NS3 protein turnover rate.

Importance: BTV is the causative agent of a severe disease transmitted between ruminants by biting midges of Culicoides species. NS3, encoded by Seg-10 of the BTV genome, fulfills key roles in BTV infection. As Seg-10 sequences from various BTV strains display genetic variability, we assessed the impact of different Seg-10 and NS3 proteins on BTV infection and host interactions. In this study, we revealed that various Seg-10/NS3 proteins alter BTV replication kinetics in mammals but not in insects. Notably, we found that NS3 protein turnover may vary in ovine but not in Culicoides cells due to a single amino acid residue that, most likely, leads to rapid and host-dependent protein degradation. Overall, this study highlights that genetically distant BTV Seg-10/NS3 influence BTV biological properties in a host-specific manner and increases our understanding of how NS3 proteins contribute to the outcome of BTV infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580187PMC
http://dx.doi.org/10.1128/JVI.01541-15DOI Listing

Publication Analysis

Top Keywords

ns3 proteins
24
replication kinetics
16
btv
16
host-specific manner
12
btv replication
12
btv infection
12
ns3
11
bluetongue virus
8
kinetics host-specific
8
midges culicoides
8

Similar Publications

The Zika virus (ZIKV), an arbovirus within the Flavivirus genus, is associated with severe neurological complications, including Guillain-Barré syndrome in affected individuals and microcephaly in infants born to infected mothers. With no approved vaccines or antiviral treatments available, there is an urgent need for effective therapeutic options. This study aimed to identify new natural compounds with inhibitory potential against the NS2B-NS3 protease (PDB ID: 5LC0), an essential enzyme in viral replication.

View Article and Find Full Text PDF

Unlabelled: Classical swine fever virus (CSFV) is a member of the genus within the family . The enveloped particles contain a plus-stranded RNA genome encoding a single large polyprotein. The processing of this polyprotein undergoes dynamic changes throughout the infection cycle.

View Article and Find Full Text PDF

[Advances in the anti-host interferon immune response of bluetongue virus].

Sheng Wu Gong Cheng Xue Bao

December 2024

College of Veterinary Medicine, Southwest University, Chongqing 402460, China.

Bluetongue virus (BTV) usually infects sheep, cattle, deer and other domesticated and wild ruminants through the bite of the vector insects, , causing bluetongue (BT). BT in subtropical and even temperate regions poses a serious threat to the development and international trade of the livestock industry. This article introduced the structure and cellular invasion, and summarized the mechanisms of anti-BTV immune response of host cells and antagonism of host cell innate immune response by the non-structural proteins (e.

View Article and Find Full Text PDF

Japanese encephalitis virus NS3 captures the protein translation element by interacting with HNRNPH1 to promote viral replication.

Int J Biol Macromol

December 2024

Animal-derived Food Safety Innovation Team, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, Anhui Agricultural University, Hefei 230036, China. Electronic address:

Japanese encephalitis caused by Japanese encephalitis virus (JEV) infection leads to the central nervous system disorder in human and swine. Viruses utilize the host protein synthesis mechanisms to efficiently translate their RNAs. Herein, we demonstrated that the host transcription factor SOX10 downregulated an RNA-binding protein heterogeneous nuclear ribonucleoprotein H (HNRNPH1) during JEV infection.

View Article and Find Full Text PDF

Japanese encephalitis virus (JEV) NS2B-NS3 is a protein complex composed of NS3 proteases and an NS2B co-factor. The N-terminal protease domain (180 residues) of NS3 (NS3(pro)) interacts directly with a central 40-amino acid hydrophilic domain of NS2B (NS2B(H)) to form an active serine protease. In this study, the recombinant NS2B(H)-NS3(pro) proteases were prepared in and used to compare the enzymatic activity between genotype I (GI) and III (GIII) NS2B-NS3 proteases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!