Application of Isothermal Amplification Techniques for Identification of Madurella mycetomatis, the Prevalent Agent of Human Mycetoma.

J Clin Microbiol

Peking University Health Science Center, Research Center for Medical Mycology, Beijing, China Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China Shanghai Institute of Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, China Basic Pathology Department, Federal University of Paraná State, Curitiba, Paraná, Brazil King Abdulaziz University, Jeddah, Saudi Arabia

Published: October 2015

Appropriate diagnosis and treatment of eumycetoma may vary significantly depending on the causative agent. To date, the most common fungus causing mycetoma worldwide is Madurella mycetomatis. This species fails to express any recognizable morphological characteristics, and reliable identification can therefore only be achieved with the application of molecular techniques. Recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) are proposed as alternatives to phenotypic methods. Species-specific primers were developed to target the ribosomal DNA (rDNA) internal transcribed spacer (ITS) region of M. mycetomatis. Both isothermal amplification techniques showed high specificity and sufficient sensitivity to amplify fungal DNA and proved to be appropriate for detection of M. mycetomatis. Diagnostic performance of the techniques was assessed in comparison to conventional PCR using biopsy specimens from eumycetoma patients. RPA is reliable and easy to operate and has the potential to be implemented in areas where mycetoma is endemic. The techniques may be expanded to detect fungal DNA from environmental samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4572522PMC
http://dx.doi.org/10.1128/JCM.01544-15DOI Listing

Publication Analysis

Top Keywords

isothermal amplification
12
amplification techniques
8
madurella mycetomatis
8
fungal dna
8
techniques
5
application isothermal
4
amplification
4
techniques identification
4
identification madurella
4
mycetomatis
4

Similar Publications

Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China.

Adv Biotechnol (Singap)

February 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine deltacoronavirus (PDCoV) and Swine acute diarrhea syndrome coronavirus (SADS-CoV) rank among the most frequently encountered swine enteric coronaviruses (SECoVs), leading to substantial economic losses to the swine industry. The availability of a rapid and highly sensitive detection method proves beneficial for the monitoring and surveillance of SECoVs. Based on the N genes of four distinct SECoVs, a novel detection method was developed in this study by combining recombinant enzyme polymerase isothermal amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) 12a.

View Article and Find Full Text PDF

Logical Analysis of Multiple miRNAs with Isothermal Molecular Classifiers Based on LATE-RCA.

Nano Lett

January 2025

Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.

Logical analysis of multiple-miRNA expression information and immediate output of diagnostic results facilitates early cancer detection. In this work, we constructed an isothermal molecular classifier capable of performing computations on multiple miRNAs and directly providing diagnosis results. First, we developed linear-after-the-exponential rolling circle amplification (LATE-RCA), a nearly linear isothermal amplification that does not destroy the original quantitative information about miRNAs.

View Article and Find Full Text PDF

fungal species are considered major plant pathogens, infecting various crops and resulting in significant agricultural losses. Additionally, these species can contaminate grain with multiple mycotoxins that are harmful to humans and animals. Efficient pest management relies on timely detection and identification of phytopathogens in plant and grain samples, facilitating prompt selection of a crop protection strategy.

View Article and Find Full Text PDF

Confined CHA-HCR system for sensitive and specific detection of ANXA2 mRNA in adenomyosis tissues.

J Pharm Biomed Anal

January 2025

Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian 350005, China; FujianKey Laboratory of Women and Children's Critical Diseases Research, Fuzhou, Fujian 350005, China. Electronic address:

Isothermal, enzyme-free amplification techniques, such as the hybridization chain reaction (HCR) and catalytic hairpin assembly (CHA), have gained significant attention for mRNA analysis. Despite their potential, these methods still face challenges, including false positives and low amplification efficiency. To overcome these limitations, we have developed a confined catalytic hairpin assembly and hybridization chain reaction (CHA-HCR) system that utilizes cholesterol-modified hairpin probes to enhance the sensitivity and specificity of mRNA detection.

View Article and Find Full Text PDF

Pathogen nucleic acid detection technology based on isothermal amplification and CRISPR/Cas12a system offers advantages in terms of high sensitivity, high specificity, and rapidity. However, this method has not been widely applied because of its shortcomings in utilizing conventional instruments, which cannot satisfy the requirements for Point of Care Testing (POCT), such as integration, convenience, and miniaturization. In this study, we developed an integrated lift-heater centrifugal microfluidic platform (Lift-CM) to automate the processes of isothermal amplification and CRISPR/Cas12a detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!