Pandemic influenza remains as a substantial threat to humans with a widespread panic worldwide. In contrast, seasonal (non-pandemic) has a mild non-lethal infection each year. The underlying mechanisms governing the detrimental effects of pandemic influenza are yet to be known. Transcriptomic-based network discovery and gene ontology (GO) analysis of host response to pandemic influenza, compared to seasonal influenza, can shed light on the differential mechanisms which pandemic influenza is employed during evolution. Here, using microarray data of infected ferrets with pandemic and seasonal influenza (as a model), we evaluated the possible link between altered genes after pandemic infection with activation of neuronal disorders. To this end, we utilized novel computational biology techniques including differential transcriptome analysis, network construction, GO enrichment, and GO network to investigate the underlying mechanisms of pandemic influenza infection and host interaction. In comparison to seasonal influenza, pandemic influenza differentially altered the expression of 31 genes with direct involvement in activity of central nervous system (CNS). Network topology highlighted the high interactions of IRF1, NKX2-1 and NR5A1 as well as MIR27A, MIR19A, and MIR17. TGFB2, NCOA3 and SP1 were the central transcription factors in the networks. Pandemic influenza remarkably downregulated GPM6A and GTPase. GO network demonstrated the key roles of GPM6A and GTPase in regulation of important functions such as synapse assembly and neuron projection. For the first time, we showed that besides interference with cytokine/chemokine storm and neuraminidase enzyme, H1N1 pandemic influenza is able to directly affect neuronal gene networks. The possibility of application of some key regulators such as GPM6A protein, MIR128, and MIR367 as candidate therapeutic agents is discussed. The presented approach established a new way to unravel unknown pathways in virus-associated CNS dysfunction by utilizing global transcriptomic data, network and GO analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-015-3916-4 | DOI Listing |
Cytokine
December 2024
Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430023, China; Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:
In the post-pandemic era, research on respiratory diseases should refocus on pathogens other than the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Respiratory pathogens, highly infectious to children, with to different modes of infection, such as single-pathogen infections and co-infections. Understanding the seasonal patterns of these pathogens, alongside identifying single infections and co-infections and their impact on the pediatric immune status, is crucial for clinical diagnosis, treatment, and prognosis in children.
View Article and Find Full Text PDFRev Med Virol
January 2025
United States Department of Agriculture, Exotic & Emerging Avian Viral Diseases Research, Southeast Poultry Research Laboratory, United States National Poultry Research Center, Agricultural Research Service, Athens, Georgia, USA.
Avian influenza viruses are ubiquitous in the Anatinae subfamily of aquatic birds and occasionally spill over to poultry. Infection with low pathogenicity avian influenza viruses generally leads to subclinical or mild clinical disease. In contrast, highly pathogenic avian influenza viruses emerge from low pathogenic forms and can cause severe disease associated with extraordinarily high mortality rates.
View Article and Find Full Text PDFAnn Med
December 2025
Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada.
Background: Despite high COVID-19 vaccine coverage in Canada, vaccine acceptance and preferred delivery among newcomers, racialized persons, and those who primarily speak minority languages are not well understood. This national study explores COVID-19 vaccine acceptance, access to vaccines, and delivery preferences among ethnoculturally diverse population groups.
Methods: We conducted two national cross-sectional surveys during the pandemic (Dec 2020 and Oct-Nov 2021).
Pharmacy (Basel)
December 2024
CSL Seqirus, Summit, NJ 07901, USA.
Background: Recommendations from a trusted healthcare provider have been shown to be the most effective intervention for encouraging patients to be vaccinated. However, providers have reported feeling less prepared to address vaccination questions and having less time to discuss vaccines with patients than before the COVID-19 pandemic. Providers may benefit from a brief update about the available influenza vaccines and vaccination guidelines.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Institute of Knowledge Technology, University Complutense of Madrid, 28040 Madrid, Spain.
The COVID-19 pandemic highlighted the urgent need for effective surface disinfection solutions, which has led to the use of mobile robots equipped with ultraviolet (UVC) lamps as a promising technology. This study aims to optimize the navigation of differential mobile robots equipped with UVC lamps to ensure maximum efficiency in disinfecting complex environments. Bio-inspired metaheuristic algorithms such as the gazelle optimization algorithm, whale optimization algorithm, bat optimization algorithm, and particle swarm optimization are applied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!