Reef-Specific Patterns of Gene Expression Plasticity in Eastern Oysters (Crassostrea virginica).

J Hered

From the Department of Biology, St. Mary's College of Maryland, 18952 E. Fisher Road, St. Mary's City, MD 20686-3001 (Eierman) and Department of Natural Resources, Cornell University, 213 Bradfield Hall, Ithaca, NY 14853 (Hare).

Published: January 2016

Understanding the interaction between phenotypic plasticity and evolutionary processes is important for predicting a species' response to changing environment. Strong recurrent selection each generation may be an important process in highly fecund species with broad dispersal and extensive early mortality. We tested whether selection was associated with spatial divergence in gene expression plasticity for osmoregulation in the eastern oyster (Crassostrea virginica). We collected adult oysters from high and low salinity reefs within a single estuary and after 9 weeks of acclimation at 10 and 30 salinity, measured gene expression in 24 oysters using next-generation RNA sequencing technology. The oysters had significantly different expression (DE) in response to salinity treatments for 7936 (18.9%) transcripts overall, with planned contrasts showing 8× more DE in oysters from the high-salinity reef and 15× more DE between reefs when tested at 10 salinity. The reef-by-treatment interaction was also genomically pervasive (5858 DE transcripts, 13.9%). Inter-reef F ST for transcript SNPs averaged 0.0025 with the top 1% between 0.29 and 0.73. Transcripts containing "outlier" SNPs were significantly enriched for osmoregulatory genes and showed patterns of variation consistent with selection on the low-salinity reef. Both phenotypic plasticity and recurrent selection seem to be important factors determining the realized niche of oysters within estuaries.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jhered/esv057DOI Listing

Publication Analysis

Top Keywords

gene expression
12
expression plasticity
8
crassostrea virginica
8
phenotypic plasticity
8
recurrent selection
8
oysters
6
reef-specific patterns
4
patterns gene
4
expression
4
plasticity
4

Similar Publications

Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.

View Article and Find Full Text PDF

Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy.

Plant Physiol Biochem

December 2024

College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:

Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.

View Article and Find Full Text PDF

How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley.

Plant Physiol Biochem

January 2025

Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.

Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants.

View Article and Find Full Text PDF

The basic helix-loop-helix transcription factor PpeUNE12 regulates peach ripening by promoting polyamine catabolism and anthocyanin synthesis.

Plant Physiol Biochem

January 2025

College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China. Electronic address:

The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening.

View Article and Find Full Text PDF

Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!