Background: Metformin is the first line of oral antidiabetic drug in the biguanide class for treatment of type 2 diabetes. Increasing evidence has suggested that it is a potential anti-tumor drug. However, the mechanisms underlying inhibiting tumor development remain elusive, especially in bladder tumors.

Methods: T24 and J82 cell lines were used as an in vitro model, and 24 female SD rats were used to build an N-methyl-N-nitrosourea (MNU)-induced orthotopic rat bladder cancer model. Transfection of lentivirus-based shRNA was used to construct the STAT3-KNOCKDOWN T24 cell line. After metformin treatment, the viability of bladde cancer cells was determined by CCK8. Cell cycle distribution and apoptosis were assessed by flow cytometry. The migration and invasion abilities of cells were evaluated by wound healing and transwell asssays. The inactivation of stat3 pahtway was examined by qRTPCR, western blot and Immunofluorescence.

Results: Metformin can effectively inhibit precancerous progression to invasive cancer in an MNU-induced rat orthotopic bladder tumor model, although it could not completely suppress normal cells transforming into tumor cells. While the MNU could induce 50 % rats (4/8) to develop invasive bladder cancers, the rats co-administrated with metformin failed to develop invasive tumors but retained at precancerous or non-invasive stages, exhibiting as dysplasia, papillary tumor and/or carcinoma in situ (CIS). Accordingly, phosphorylation of signal transducer and activator of transcription 3 (STAT3), which is a well known oncogene, was significantly inhibited in the tumors of rats treated with metformin. In vitro experiments revealed that the metformin could efficiently inhibit STAT3 activation, which was associated with the cell cycle arrest, reduction of cell proliferation, migration and invasiveness, and increase in apoptotic cell death of bladder cancer cell lines.

Conclusions: These findings provide for the first time the evidence that metformin can block precancerous lesions progressing to invasive tumors through inhibiting the activation of STAT3 pathway, and may be used for treatment of the non-invasive bladder cancers to prevent them from progression to invasive tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553001PMC
http://dx.doi.org/10.1186/s13046-015-0183-0DOI Listing

Publication Analysis

Top Keywords

invasive tumors
16
progression invasive
12
metformin
8
metformin block
8
block precancerous
8
precancerous progression
8
bladder cancer
8
cell cycle
8
develop invasive
8
bladder cancers
8

Similar Publications

Effect of zoledronic acid on biological characteristics of cervical cancer cells.

Afr J Reprod Health

November 2024

Department of Obstetrics and Gynecology, Wuxi No.2 People's Hospital, Wuxi 214002, Jiangsu Province, China.

Cervical cancer (CC) is a malignant tumor in females characterized by high incidence and mortality rates, often resulting in a poor prognosis for patients. Zoledronic acid (ZA), a third-generation bisphosphonate, exhibits anti-tumor properties across various types of tumors. To further understand the effect of ZA in the treatment of CC, this article included two kinds of human CC cells (CCCs) as the research object, examining the impact of varying levels of ZA on the cells' biological properties.

View Article and Find Full Text PDF

Novel Ru(II) Complexes as Type-I/-II Photosensitizers for Multimodal Hypoxia-Tolerant Chemo-Photodynamic/Immune Therapy.

Mol Pharm

January 2025

School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.

Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.

View Article and Find Full Text PDF

Restoration of miR-200 expression suppresses proliferation and mobility of pancreatic cancer cell.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of General Surgery, Tianjin First Center Hospital, Tianji, 300384, China.

A number of various human malignancies have been associated with abnormal microRNAs (miRNA) expression. There are evidence that miR-200 operates as both tumor suppressor and an onco-miR in a variety of tumors. In this study, we evaluated the effects of miR-200 on the proliferation and migration of pancreatic cancer cells, as well as the underlying molecular pathways.

View Article and Find Full Text PDF

Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC.

View Article and Find Full Text PDF

Aim: To evaluate the role of preoperative neutrophils to lymphocytes ratio (NLR) as a predictor for the response to BCG in patients with non-muscle invasive bladder cancer (NMIBC).

Materials: Nighty six patients with NMIBC were prospectively included in our study. Our study population was classified into two groups, based on pre-operative (NLR) either ⩽ or > 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!