Aim: The aim of the present study was to evaluate the relationship between baseline white matter lesions (WML) and changes in regional cerebral blood flow during longitudinal follow up of patients with Alzheimer's disease (AD).

Methods: A total of 38 patients with AD were included in the study (16 men, 22 women; mean age 77.8 years). All patients were evaluated using the Mini-Mental State Examination and brain perfusion single-photon emission computed tomography at baseline with an approximately 2-year follow up. The patients were divided into two subgroups according to the presence of WML on magnetic resonance imaging. Single-photon emission computed tomography data were analyzed using a voxel-by-voxel group analysis with Statistical Parametric Mapping 8 and region of interest analysis using FineSRT. Changes in Mini-Mental State Examination scores and regional cerebral blood flow were analyzed using the Wilcoxon signed-rank test.

Results: Mean Mini-Mental State Examination scores in AD patients with WML significantly decreased from 19.4 ± 4.8 to 15.5 ± 6.5 (P = 0.003). Statistical Parametric Mapping 8 and FineSRT analysis showed more severe and widespread regional cerebral blood flow reduction, mainly in the frontal and mesial temporal regions in AD patients with WML compared with those without WML.

Conclusion: Baseline WML could predict a rapid progression of cognitive and brain functional impairment during longitudinal follow up in AD. Geriatr Gerontol Int 2016; 16: 836-842.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ggi.12563DOI Listing

Publication Analysis

Top Keywords

regional cerebral
16
cerebral blood
16
blood flow
16
longitudinal follow
12
mini-mental state
12
state examination
12
white matter
8
matter lesions
8
alzheimer's disease
8
follow patients
8

Similar Publications

Working memory is associated with general intelligence and is crucial for performing complex cognitive tasks. Neuroimaging investigations have recognized that working memory is supported by a distribution of activity in regions across the entire brain. Identification of these regions has come primarily from general linear model analyses of statistical parametric maps to reveal brain regions whose activation is linearly related to working memory task conditions.

View Article and Find Full Text PDF

Remodeling and Characterization Analysis of Corticospinal Tract in Patients with Intracerebral Hemorrhage in the Basal Ganglia.

Transl Stroke Res

January 2025

Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.

To investigate corticospinal tract (CST) injury and remodeling in patients with basal ganglia intracerebral hemorrhage (ICH) and explore the characterization capabilities of the corresponding parameters. In this prospective study, baseline, scale, and diffusion-weighted imaging (DWI) data were collected from patient cohorts. Participants were stratified into favorable (0-3 points) and unfavorable (4-6 points) prognosis groups, based on Modified Rankin Scale (mRS) after 3-6 months.

View Article and Find Full Text PDF

In this investigation, we delve into the neural underpinnings of auditory processing of Sanskrit verse comprehension, an area not previously explored by neuroscientific research. Our study examines a diverse group of 44 bilingual individuals, including both proficient and non-proficient Sanskrit speakers, to uncover the intricate neural patterns involved in processing verses of this ancient language. Employing an integrated neuroimaging approach that combines functional connectivity-multivariate pattern analysis (fc-MVPA), voxel-based univariate analysis, seed-based connectivity analysis, and the use of sparse fMRI techniques to minimize the interference of scanner noise, we highlight the brain's adaptability and ability to integrate multiple types of information.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Smartphones can extend the reach of evidence-based gambling treatment services, yet the general acceptability of app-delivered gambling interventions remains unknown. This study examined the general acceptability and use of app-delivered gambling interventions, and predictors of both, among 173 Australian adults with a lifetime gambling problem (48.5% male, M = 46.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!