Methanogenesis from wastewater stimulated by addition of elemental manganese.

Sci Rep

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P.R. China.

Published: August 2015

AI Article Synopsis

  • This study introduces a new method to speed up methane production from wastewater by using elemental manganese in anaerobic digestion.
  • The addition of 4 g/L of manganese significantly boosted methane yield (3.4 times increase) and production rate (4.4 times increase) compared to tests without manganese.
  • Manganese also improved acetate consumption and reduced propionate generation, resulting in a higher methane proportion in the gas produced (96.9% with manganese vs. 46.6% without).

Article Abstract

This study presents a novel procedure for accelerating methanogenesis from wastewater by adding elemental manganese into the anaerobic digestion system. The results indicated that elemental manganese effectively enhanced both the methane yield and the production rate. Compared to the control test without elemental manganese, the total methane yield and production rate with 4 g/L manganese addition increased 3.4-fold (from 0.89 ± 0.03 to 2.99 ± 0.37 M/gVSS within 120 h) and 4.4-fold (from 6.2 ± 0.1 to 27.2 ± 2.2 mM/gVSS/h), respectively. Besides, more acetate consumption and less propionate generation were observed during the methanogenesis with manganese. Further studies demonstrated that the elemental manganese served as electron donors for the methanogenesis from carbon dioxide, and the final proportion of methane in the total generated gas with 4 g/L manganese addition reached 96.9%, which was 2.1-fold than that of the control (46.6%).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525485PMC
http://dx.doi.org/10.1038/srep12732DOI Listing

Publication Analysis

Top Keywords

elemental manganese
20
methanogenesis wastewater
8
manganese
8
methane yield
8
yield production
8
production rate
8
g/l manganese
8
manganese addition
8
elemental
5
methanogenesis
4

Similar Publications

This study investigates the quantities of Rare Earth Elements (REEs) and Potentially Toxic Elements (PTEs) in Dong Nai Province's surface soils. Atomic Absorption Spectrometry (AAS) and Instrumental Neutron Activation Analysis (INAA) were used to determine element concentrations. To validate the concentration results, established reference materials (NIST 2711 and IAEA Soil-7) were used.

View Article and Find Full Text PDF

Manganese-based (Mn-based) layered oxides have emerged as competitive cathode materials for sodium-ion batteries (SIBs), primarily due to their high energy density, cost-effectiveness, and potential for mass production. However, these materials often suffer from irreversible oxygen redox reactions, significant phase transitions, and microcrack formation, which lead to considerable internal stress and degradation of electrochemical performance. This study introduces a high-entropy engineering strategy for P2-type Mn-based layered oxide cathodes (HE-NMCO), wherein a multi-ingredient cocktail effect strengthens the lattice framework by modulating the local environmental chemistry.

View Article and Find Full Text PDF

Inductively coupled plasma mass spectrometry was employed to determine the content of 25 inorganic elements in Bambusae Concretio Silicea, and the elemental fingerprint was established according to the element content. SPSS 20.0 and SIMCA 14.

View Article and Find Full Text PDF

This study explores the enhancement in magnetic and photoluminescence properties of Mn-doped (CdSe) nanoclusters, significantly influenced by the introduction of paramagnetic centers through doping, facilitated by optimized precursor chemistry and precisely controlled surface ligand interactions. Using a cost-effective and scalable synthesis approach with elemental Se and NaBH (Se-NaBH) in n-octylamine, we tailored bonding configurations (Cd-O, Cd-N, and Cd-Se) on the surface of nanoclusters, as confirmed by EXAFS analysis. These bonding configurations allowed for tunable Mn-doping with tetrahedral coordination, further stabilized by hydrogen-bonded acetate ligands, as evidenced by C NMR and IR spectroscopy.

View Article and Find Full Text PDF

Epoxidation of olefins catalyzed by manganese(iii) salophen (MnSalop) immobilized on graphene oxide (GO) modified with 3-aminopropyltrimethoxysilane (GO·NH) has been reported. Characterization of the solid catalyst by FTIR, DR UV-Vis, FESEM, XRD, elemental scanning mappings, TGA/DTG, BET measurements, and ICP analysis aided in understanding the catalyst morphology. It confirmed that there was no significant demetallation or chemical change in MnSalop-GO·NH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!