Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by a selective loss of motor neurons together with a progressive muscle weakness. Albeit the pathophysiological mechanisms of the disease remain unknown, growing evidence suggests that skeletal muscle can be a target of ALS toxicity. In particular, the two main intracellular degradation mechanisms, autophagy and the ubiquitin-proteasome degradative system (UPS) have been poorly studied in this tissue. In this study we investigated the activation of autophagy and the UPS as well as apoptosis in the skeletal muscle from SOD1G93A mice along disease progression. Our results showed a significant upregulation of proteasome activity at early symptomatic stage, while the autophagy activation was found at presymptomatic and terminal stages. The mRNA upregulated levels of LC3, p62, Beclin1, Atg5 and E2f1 were only observed at symptomatic and terminal stages, which reinforced the time-point activation of autophagy. Furthermore, no apoptosis activation was observed along disease progression. The combined data provided clear evidence for the first time that there is a time-point dependent activation of autophagy and UPS in the skeletal muscle from SOD1G93A mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526523 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134830 | PLOS |
Anticancer Drugs
January 2025
Department of General Surgery and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center.
In gastric cancer, the relationship between human epidermal growth factor receptor 2 (HER2), the cyclic GMP-AMP synthase-stimulator of the interferon genes (cGAS-STING) pathway, and autophagy remains unclear. This study examines whether HER2 regulates autophagy in gastric cancer cells via the cGAS-STING signaling pathway, influencing key processes such as cell proliferation and migration. Understanding this relationship could uncover new molecular targets for diagnosis and treatment.
View Article and Find Full Text PDFHormones (Athens)
January 2025
LABIOEX-Exercise Biology Lab, Department of Health Sciences, UFSC-Federal University of Santa Catarina, Araranguá, SC, Brazil.
The endocannabinoid system (ECS), regulating such processes as energy homeostasis, inflammation, and muscle function, centers around cannabinoid receptors, including CB1. These receptors are mainly located in the central nervous system and skeletal muscles. Hyperactivity of CB1 receptors is linked to metabolic disorders and chronic inflammation, highlighting their potential as therapeutic targets for muscle hypertrophy and metabolic health.
View Article and Find Full Text PDFBackground: For patients with head and neck squamous cell carcinoma (HNSCC), failure of definitive radiation combined with cisplatin nearly universally results in death. Although hyperactivation of the Nrf2 pathway can drive radiation and cisplatin resistance along with suppressed anti-tumor immunity, treatment-refractory HNSCC tumors may retain sensitivity to targeted agents secondary to synergistic lethality with other oncogenic drivers (e.g.
View Article and Find Full Text PDFFront Immunol
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China.
Background: Telitacicept, a new biological agent, was approved in China for treating systemic lupus erythematosus (SLE) in 2021. Its optimal dosing for treating SLE remains unclear. Therefore, the aim of this meta-analysis is to evaluate the efficacy and safety of various telitacicept doses in SLE treatment.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang Medical University Urumqi Xinjiang China.
a member of the family, is known for its diverse biological activities, including anti-inflammatory properties. The mechanisms through which polysaccharide (LTP) induces autophagy, however, remain largely unexplored. This study aims to elucidate the role of LTP in autophagy induction and its efficacy in mitigating inflammation within macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!